Myometrial connexin-43 gap junctions are scarce throughout gestation but appear in large numbers at term to facilitate contractions during labor. The mechanisms that regulate this process are incompletely characterized. This report investigates the effects of protein kinase C activation on the regulation of connexin-43 gene transcription in human uterine smooth muscle cells. In primary myometrial cells treated with phorbol ester, transient increases in c-Fos and c-Jun protein levels were observed at 2-4 h, followed by significant increases in connexin-43 protein levels at 6-8 h. Nuclear run-on transcription analysis showed an increase in connexin-43 transcription 3 h after phorbol ester treatment. AP-1 sites were identified in the sequence of the 5'-flanking promoter region of the human connexin-43 gene at 44 and 1000 base pairs upstream of transcription start. Transcription from a reporter plasmid containing the proximal human connexin-43 promoter was increased in transfected primary cultures treated with phorbol ester. Mutation of the proximal AP-1 site in the promoter abolished the phorbol ester-dependent transactivation. This work provides evidence that transcription of the human connexin-43 gene is induced through protein kinase C activation in uterine smooth muscle cells, and that the induction involves up-regulation and activation of c-Jun and c-Fos.
Extracellular ATP (eATP), released as a "danger signal" by injured or stressed cells, plays an important role in the regulation of immune responses, but the relationship between ATP release and innate immune responses is still uncertain. In this study, we demonstrated that ATP was released through Toll-like receptor (TLR)-associated signaling in both Escherichia coli-infected mice and lipopolysaccharide (LPS)-or Pam3CSK4-treated macrophages. This ATP release could be blocked completely only by N-ethylmaleimide (NEM), not by carbenoxolone (CBX), flufenamic acid (FFA), or probenecid, suggesting the key role of exocytosis in this process. Furthermore, LPS-induced ATP release could also be reduced dramatically through suppressing calcium mobilization by use of U73122, caffeine, and thapsigargin (TG). In addition, the secretion of interleukin-1 (IL-1) and CCL-2 was enhanced significantly by ATP, in a time-and dose-dependent manner. Meanwhile, macrophage-mediated phagocytosis of bacteria was also promoted significantly by ATP stimulation. Furthermore, extracellular ATP reduced the number of invading bacteria and protected mice from peritonitis by activating purinergic receptors. Mechanistically, phosphorylation of AKT and ERK was overtly increased by ATP in antibacterial immune responses. Accordingly, if we blocked the P2X-and P2Y-associated signaling pathway by using suramin and pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid), tetrasodium salt (PPADS), the ATP-enhanced immune response was restrained significantly. Taken together, our findings reveal an internal relationship between danger signals and TLR signaling in innate immune responses, which suggests a potential therapeutic significance of calcium mobilization-mediated ATP release in infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.