Oxygen homeostasis disturbances play a critical role in the pathogenesis of acute kidney injury (AKI). The transcription factor hypoxia-inducible factor-1 (HIF-1) is a master regulator of adaptive responses to hypoxia. Aside from post-translational hydroxylation, mechanism of HIF-1 regulation in AKI remains largely unclear. In this study, the mechanism of HIF-α regulation in AKI was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level in ischemia/reperfusion (I/R)-, unilateral ureteral obstruction (UUO)-, and sepsis-induced AKI models, which was closely associated with macrophage-dependent inflammation. Meanwhile, nuclear factor-κB (NF-κB), which plays a central role in inflammation response, was involved in the increasing expression of HIF-1α in AKI, as evidenced by pharmacological modulation (NF-κB inhibitor BAY11-7082). Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription, which occurred not only in hypoxic condition, but also in normoxic condition. Moreover, the induced HIF-1α by inflammation protected against the tubular injury in AKI. Thus, our findings not only provide novel insight into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.
Background: The microRNA-30 family plays a critical role in the pathogenesis of podocyte injury. Cx43 plays an essential role in intercellular communication, which is essential for coordinated kidney function.This study was conducted to explore the function of microRNA-30s/Cx43 in podocyte injury in diabetic nephropathy (DN), both in vivo and in vitro.Methods: SD rats were given streptozotocin (STZ) injections to induce DN. Podocytes were incubated in the medium in the presence or absence of high glucose (HG). The effects of the microRNA-30/Cx43 axis on DN and its underlying mechanisms were investigated by TUNEL assay, PAS, immunohistochemical staining, immunofluorescence staining, Western blot, RT-qPCR, RNA interference, and luciferase reporter assay. Podocytes were transfected with microRNA-30 family mimics, microRNA-30 family inhibitors, Cx43 siRNA, and negative controls to detect the effect of the microRNA-30/Cx43 axis. MicroRNA-30 family mimic AAVs, and microRNA-30 family inhibitor AAVs applied to regulate microRNA-30 family expression in the kidneys of the STZ-induced DN model rats to reveal the underlying mechanisms of the microRNA-30/Cx43 axis in DN.Results: MicroRNA-30 family member expression was downregulated in HG-treated podocytes and the glomeruli of STZ-induced DN rats. Luciferase reporter assays confirmed Cx43 is a directed target of microRNA-30s. The overexpression of microRNA-30 family members attenuated the HG-induced podocyte injury and protected against podocyte apoptosis and endoplasmic reticulum stress (ERS) both in vivo and in vitro. Also, silencing Cx43 expression eased podocyte apoptosis, injury, and ERS induced by a HG+microRNA-30 family inhibitor. Double-immunofluorescence staining assays proved the co-localization of caspase12 and Cx43. Conclusions:The overexpression of microRNA-30 family members prevents HG-induced podocyte injury and attenuates ERS by modulating Cx43 expression. The microRNA-30/Cx43/ERS axis might be a potential therapeutic target to treat DN.
Supplemental Figure 1. The average content of ZO-1 experienced an increasing trend in DN patients with the pathological progression from stage IIa to IV. The ratio of IOD of ZO-1 (A) and p62 (B) to WT-1 count in the glomeruli of DN patents at different stages as indicated.
Rationale : Cisplatin nephrotoxicity is an important cause of acute kidney injury (AKI), limiting cisplatin application in cancer therapy. Growing evidence has suggested that genome instability, telomeric dysfunction, and DNA damage were involved in the tubular epithelial cells (TECs) damage in cisplatin-induced AKI (cAKI). However, the exact mechanism is largely unknown. Methods: We subjected miR-155 -/- mice and wild-type controls, as well as HK-2 cells, to cAKI models. We assessed kidney function and injury with standard techniques. The cell apoptosis and DNA damage of TECs were evaluated both in vivo and in vitro . Telomeres were measured by the fluorescence in situ hybridization. Results: The expression level of miR-155 was upregulated in cAKI. Inhibition of miR-155 expression protected cisplatin-induced AKI both in vivo and in vitro . Compared with wild-type mice, miR-155 -/- mice had reduced mortality, improved renal function and pathological damage after cisplatin intervention. Moreover, inhibition of miR-155 expression attenuated TECs apoptosis and DNA damage. These protective effects were caused by increasing expression of telomeric repeat binding factor 1 (TRF1) and cyclin-dependent kinase 12 (CDK12), thereby limiting the telomeric dysfunction and the genomic DNA damage in cAKI. Conclusion: We demonstrated that miR-155 deficiency could significantly attenuate pathological damage and mortality in cAKI through inhibition of TECs apoptosis, genome instability, and telomeric dysfunction, which is possibly regulated by the increasing expression of TRF1 and CDK12. This study will provide a new molecular strategy for the prevention of cAKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.