The increasing demand for iron ore in the world causes the continuous exhaustion of mineral resources. The utilization of iron in secondary resources has become of focus. The present study was carried out to recover iron from high-sulfur cyanide tailings by coal-based reduction roasting-magnetic separation. The mechanism of CaO to increase iron recovery and reduce sulfur was investigated by observing CO and CO2 gas composition produced by the reaction, mineral composition and microstructure, distribution characteristics of sulfur, and the intercalation relationship between iron particles and gangue minerals. The results showed that the addition of CaO could increase the gasification rate of the reducing agent, increase the amount of CO2 gas produced, promote the reduction of iron minerals, and improve the metallization degree of iron. When CaO was not added, sulfur was mainly transformed into troilite, which was closely connected with iron particles and was difficult to remove by grinding and magnetic separation. With the addition of CaO, CaO preferentially formed oldhamite with active sulfur, which reduced the formation of troilite. Oldhamite was basically distributed in an independent gangue structure. There was a clear boundary between iron particles and gangue minerals. Oldhamite could be removed by grinding-magnetic separation.
For a low grade dolomite type fluorite ore in the Hebei province, it was observed that the depressant CK102, a mixture of sulfuric acid, sodium silicate and aluminum sulfate, can effectively inhibit the gangue mineral dolomite in the flotation of fluorite. However, the inhibition mechanism of the depressant is still unclear. In this paper, the flotation separation performance and underlying mechanism of CK102 inhibiting dolomite were investigated through mineral flotation tests, adsorption measurements, infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). The flotation results showed that the inhibition effect of CK102 on dolomite flotation was much more remarkable than that of fluorite flotation under optimum conditions. Adsorption measurements revealed that there was competitive adsorption between the depressant and collector and that the adsorption of the depressant CK102 prevented the collector modified sodium oleate from adsorbing onto the surface of minerals. The FT-IR and XPS results showed that the co-oxygen cross-linked component of the depressant CK102 chemisorbed on the surface of dolomite; the CaSiO3 precipitation was generated from the reaction of CK102 with Ca 2+ groups on the surface of the dolomite; Al2MgO8Si2 precipitation was also generated from Mg 2+ reacting with the sodium silicate and aluminum sulfate of CK102. The above adsorptions and reactions enhanced the hydrophilicity of the dolomite surface and the dolomite was effectively depressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.