Fourier-domain optical coherence tomography (OCT) and balloon-based catheters have furthered the potential of OCT as a real-time surveillance tool for Barrett’s esophagus (BE). However, a balloon catheter, which expands the esophagus and centers the catheter, applies direct pressure on the esophagus. This may affect the tissue appearance and the ability to detect dysplasia in BE. To study this effect, we propose a double-balloon catheter to allow imaging with and without balloon-tissue contact. A system design based on a spectral-domain OCT platform is reported and validated by acquisition of high quality, volumetric images of swine esophagus in vivo.
3-D optical coherence tomography (OCT) has been extensively investigated as a potential screening and/or surveillance tool for Barrett’s esophagus (BE). Understanding and correcting motion artifact may improve image interpretation. In this work, the motion trace was analyzed to show the physiological origin (respiration and heart beat) of the artifacts. Results showed that increasing balloon pressure did not sufficiently suppress the physiological motion artifact. An automated registration algorithm was designed to correct such artifacts. The performance of the algorithm was evaluated in images of normal porcine esophagus and demonstrated in images of BE in human patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.