Many high level representations of time series have been proposed for data mining, including Fourier transforms, wavelets, eigenwaves, piecewise polynomial models, etc. Many researchers have also considered symbolic representations of time series, noting that such representations would potentiality allow researchers to avail of the wealth of data structures and algorithms from the text processing and bioinformatics communities. While many symbolic representations of time series have been introduced over the past decades, they all suffer from two fatal flaws. First, the dimensionality of the symbolic representation is the same as the original data, and virtually all data mining algorithms scale poorly with dimensionality. Second, although distance measures can be defined on the symbolic approaches, these distance measures have little correlation with distance measures defined on the original time series.In this work we formulate a new symbolic representation of time series. Our representation is unique in that it allows dimensionality/numerosity reduction, and it also allows distance measures to be defined on the symbolic approach that lower bound corresponding distance measures defined on the original series. As we shall demonstrate, this latter feature is particularly exciting because it allows one to run certain data mining algorithms on the efficiently manipulated symbolic representation, while producing identical results to the algorithms that operate on the original data. In particular, we will demonstrate the utility of our representation on various data mining tasks of clustering, classification, query by content, anomaly detection, motif discovery, and visualization.
Many algorithms have been proposed for the problem of time series classification. However, it is clear that one-nearest-neighbor with Dynamic Time Warping (DTW) distance is exceptionally difficult to beat. This approach has one weakness, however; it is computationally too demanding for many realtime applications. One way to mitigate this problem is to speed up the DTW calculations. Nonetheless, there is a limit to how much this can help. In this work, we propose an additional technique, numerosity reduction, to speed up one-nearestneighbor DTW. While the idea of numerosity reduction for nearest-neighbor classifiers has a long history, we show here that we can leverage off an original observation about the relationship between dataset size and DTW constraints to produce an extremely compact dataset with little or no loss in accuracy. We test our ideas with a comprehensive set of experiments, and show that it can efficiently produce extremely fast accurate classifiers.
The problem of time series classification has attracted great interest in the last decade. However current research assumes the existence of large amounts of labeled training data. In reality, such data may be very difficult or expensive to obtain. For example, it may require the time and expertise of cardiologists, space launch technicians, or other domain specialists. As in many other domains, there are often copious amounts of unlabeled data available. For example, the PhysioBank archive contains gigabytes of ECG data. In this work we propose a semisupervised technique for building time series classifiers. While such algorithms are well known in text domains, we will show that special considerations must be made to make them both efficient and effective for the time series domain. We evaluate our work with a comprehensive set of experiments on diverse data sources including electrocardiograms, handwritten documents, manufacturing, and video datasets. The experimental results demonstrate that our approach requires only a handful of labeled examples to construct accurate classifiers.
The vast majority of data mining algorithms require the setting of many input parameters. The dangers of working with parameter-laden algorithms are twofold. First, incorrect settings may cause an algorithm to fail in finding the true patterns. Second, a perhaps more insidious problem is that the algorithm may report spurious patterns that do not really exist, or greatly overestimate the significance of the reported patterns. This is especially likely when the user fails to understand the role of parameters in the data mining 100 E. Keogh et al.process. Data mining algorithms should have as few parameters as possible. A parameter-light algorithm would limit our ability to impose our prejudices, expectations, and presumptions on the problem at hand, and would let the data itself speak to us. In this work, we show that recent results in bioinformatics, learning, and computational theory hold great promise for a parameter-light data-mining paradigm. The results are strongly connected to Kolmogorov complexity theory. However, as a practical matter, they can be implemented using any off-the-shelf compression algorithm with the addition of just a dozen lines of code. We will show that this approach is competitive or superior to many of the state-of-the-art approaches in anomaly/interestingness detection, classification, and clustering with empirical tests on time series/DNA/text/XML/video datasets. As a further evidence of the advantages of our method, we will demonstrate its effectiveness to solve a real world classification problem in recommending printing services and products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.