Monitoring animals by the sounds they produce is an important and challenging task, whether the application is outdoors in a natural habitat, or in the controlled environment of a laboratory setting.In the former case, the density and diversity of animal sounds can act as a measure of biodiversity. In the latter case, researchers often create control and treatment groups of animals, expose them to different interventions, and test for different outcomes. One possible manifestation of different outcomes may be changes in the bioacoustics of the animals.With such a plethora of important applications, there have been significant efforts to build bioacoustic classification tools. However, we argue that most current tools are severely limited. They often require the careful tuning of many parameters (and thus huge amounts of training data), are either too computationally expensive for deployment in resource-limited sensors, specialized for a very small group of species, or are simply not accurate enough to be useful.In this work we introduce a novel bioacoustic recognition/classification framework that mitigates or solves all of the above problems. We propose to classify animal sounds in the visual space, by treating the texture of their sonograms as an acoustic fingerprint using a recently introduced parameter-free texture measure as a distance measure. We further show that by searching for the most representative acoustic fingerprint, we can significantly outperform other techniques in terms of speed and accuracy.