Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last followup on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.
Purpose
Fundamental frequency (F0) is the primary acoustic cue for lexical tone perception in tonal languages but is processed in a limited way in cochlear implant (CI) systems. The aim of this study was to evaluate the importance of F0 contours in sentence recognition in Mandarin-speaking children with CIs and find out whether it is similar to/different from that in age-matched normal-hearing (NH) peers.
Method
Age-appropriate sentences, with F0 contours manipulated to be either natural or flattened, were randomly presented to preschool children with CIs and their age-matched peers with NH under three test conditions: in quiet, in white noise, and with competing sentences at 0 dB signal-to-noise ratio.
Results
The neutralization of F0 contours resulted in a significant reduction in sentence recognition. While this was seen only in noise conditions among NH children, it was observed throughout all test conditions among children with CIs. Moreover, the F0 contour-induced accuracy reduction ratios (i.e., the reduction in sentence recognition resulting from the neutralization of F0 contours compared to the normal F0 condition) were significantly greater in children with CIs than in NH children in all test conditions.
Conclusions
F0 contours play a major role in sentence recognition in both quiet and noise among pediatric implantees, and the contribution of the F0 contour is even more salient than that in age-matched NH children. These results also suggest that there may be differences between children with CIs and NH children in how F0 contours are processed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.