This study aimed to measure the knowledge and perceptions of medical, public health, and nursing students about climate change and its impacts, and to identify associations between the knowledge and perceptions. Data were from a nationwide cross-sectional survey of 1387 students sampled in five different regional universities in China (April–May 2017). The knowledge and perceptions of the participants were collected by self-administered questionnaires. We found that most respondents believed that climate change is generally “bad” (83%) and bad for human health (88%), while 67% believed that climate change is controllable. The vast majority of respondents acknowledged illness conditions resulting from poor air quality (95%), heat stress (93%), and extreme weather events (91%) as potential impacts of climate change. Nevertheless, only 39% recognized malnutrition as a consequence of food deprivation resulting from climate change. Around 58% of respondents could correctly identify the causes of climate change. The knowledge of the causes of climate change was not associated with the ability to recognize the health consequences of climate change. However, the knowledge of causes of climate change was a significant predictor of increased awareness of the negative impacts of climate change between the medical and nursing students, although this was not the case among their public health counterparts. Poor knowledge about the causes of climate change is evident among students in China. They are able to recognize the direct links between weather events and health, but less likely to understand the consequences involving complicated pathways. Research and training into the underlying mechanisms of health impacts of climate change needs to be strengthened.
Lignin from different biomasses possess biological antioxidation and antimicrobial activities, which depend on the number of functional groups and the molecular weight of lignin. In this work, organosolv fractionation was carried out to prepare the lignin fraction with a suitable structure to tailor excellent biological activities. Gel permeation chromatography (GPC) analysis showed that decreased molecular weight lignin fractions were obtained by sequentially organosolv fractionation with anhydrous acetone, 50% acetone and 37.5% hexanes. Nuclear magnetic resonance (NMR) results indicated that the lignin fractions with lower molecular weight had fewer substructures and a higher phenolic hydroxyl content, which was positively correlated with their antioxidation ability. Both of the original lignin and fractionated lignins possessed the ability to inhibit the growth of Gram-negative bacteria (Escherichia coli and Salmonella) and Gram-positive bacteria (Streptococcus and Staphylococcus aureus) by destroying the cell wall of bacteria in vitro, in which the lignin fraction with the lowest molecular weight and highest phenolic hydroxyl content (L3) showed the best performance. Besides, the L3 lignin showed the ability to ameliorate Escherichia coli-induced diarrhea damages of mice to improve the formation of intestinal contents in vivo. These results imply that a lignin fraction with a tailored structure from bamboo lignin can be used as a novel antimicrobial agent in the biomedical field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.