Many applications in biostatistics rely on nonlinear regression models, such as, for example, population pharmacokinetic and pharmacodynamic modeling, or modeling approaches for dose-response characterization and dose selection. Such models are often expressed as nonlinear mixed-effects models, which are implemented in all major statistical software packages. Inference on the model curve can be based on the estimated parameters, from which pointwise confidence intervals for the mean profile at any single point in the covariate region (time, dose, etc.) can be derived. These pointwise confidence intervals, however, should not be used for simultaneous inferences beyond that single covariate value. If assessment over the entire covariate region is required, the joint coverage probability by using the combined pointwise confidence intervals is likely to be less than the nominal coverage probability. In this paper we consider simultaneous confidence bands for the mean profile over the covariate region of interest and propose two large-sample methods for their construction. The first method is based on the Schwarz inequality and an asymptotic χ(2) distribution. The second method relies on simulating from a multivariate normal distribution. We illustrate the methods with the pharmacokinetics of theophylline. In addition, we report the results of an extensive simulation study to investigate the operating characteristics of the two construction methods. Finally, we present extensions to construct simultaneous confidence bands for the difference of two models and to assess equivalence between two models in biosimilarity applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.