Oxidative stress and reduced pH are involved in many inflammatory diseases. This study describes a nanoparticle-based system that is responsive to both oxidative stress and reduced pH in an inflammatory environment to effectively release its encapsulated curcumin, an immune-modulatory agent with potent anti-inflammatory and antioxidant capabilities. Because of the presence of Förster resonance energy transfer between curcumin and the carrier, this system also allowed us to monitor the intracellular release behavior. The curcumin released upon triggering could efficiently reduce the excess oxidants produced by the lipopolysaccharide (LPS)-stimulated macrophages. The feasibility of using the curcumin-loaded nanoparticles for anti-inflammatory applications was further validated in a mouse model with ankle inflammation induced by LPS. The results of these studies demonstrate that the proposed nanoparticle system is promising for treating oxidative stress-related diseases.
Pulsatile release: When a high-frequency magnetic field is applied, heat will be generated by coupling to the iron oxide nanoparticles encapsulated in the shells of PLGA hollow microspheres. As the temperature approaches the T(g) of PLGA, the polymer chains become more mobile, subsequently increasing the free volume of PLGA matrix and significantly enhancing the diffusion of drug molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.