The phylogenetic relationships of Asian schilbid catfishes of the genera Clupisoma, Ailia, Horabagrus, Laides and Pseudeutropius are poorly understood, especially those of Clupisoma. Herein, we reconstruct the phylogeny of 38 species of catfishes belonging to 28 genera and 14 families using the concatenated mitochondrial genes COI, cytb, and 16S rRNA, as well as the nuclear genes RAG1 and RAG2. The resulting phylogenetic trees consistently place Clupisoma as the sister taxon of Laides, and the five representative Asian schilbid genera form two monophyletic groups with the relationships (Ailia (Laides, Clupisoma)) and (Horabagrus, Pseudeutropius). The so-called “Big Asia” lineage relates distantly to African schilbids. Independent analyses of the mitochondrial and nuclear DNA data yield differing trees for the two Asian schilbid groups. Analyses of the mitochondrial gene data support a sister-group relationship for (Ailia (Laides, Clupisoma)) and the Sisoroidea and a sister-taxon association of (Horabagrus, Pseudeutropius) and the Bagridae. In contrast, analyses of the combined nuclear data indicate (Ailia (Laides, Clupisoma)) to be the sister group to (Horabagrus, Pseudeutropius). Our results indicate that the Horabagridae, recognized by some authors as consisting of Horabagrus, Pseudeutropius and Clupisoma does not include the latter genus. We formally erect a new family, Ailiidae fam. nov. for a monophyletic Asian group comprised of the genera Ailia, Laides and Clupisoma.
The phylogenetic relationships of European and African Barbus and their West Asian relatives in Cyprininae remain largely unresolved. Consequently, little is known about the drivers of their evolution, including the possible association of uplifting of the Qinghai-Tibetan Plateau (QTP) with the early divergence of the subfamily. We use complete sequence data of the mitochondrial DNA gene encoding the protein cytochrome b (Cytb) to hypothesize the phylogeny of 85 species belonging to 47 genera in the Cyprininae plus 6 species from the Leuciscinae. We employ 6 other species from Cypriniformes as outgroup taxa and estimate divergence times. Our results indicate that European Barbus sensu stricto lineage including Aulopyge shares a common ancestor with specialized and highly specialized schizothoracins and the genera Cyprinion and Scaphiodonichtys. The common ancestor appears to have originated in the Qinghai-Tibetan Plateau (QTP) region about 19.4-17.8 Ma. Barbus sensu stricto lineage appears to have originated about 16.6-15.5 Ma. Small to medium sized African Barbus sensu lato appear to have had an Oriental origin about 19.1-15.3 Ma and are closely related to Asian Puntius. West Asian Carasobarbus lineage including large African Barbus sensu lato might have originated about 9.94 Ma, also in Oriental Realm and has a close relationship to Asian Neolissochilus and Tor. The large-sized Barbus sensu lato appear to have diverged from Carasobarbus about 7.7 Ma. Finally, the Cyprininae appear to have radiated rapidly into nine lineages and many sublineages from about 27.8 to 17.8 Ma, close to the time of the second-stage tectonic movements of the QTP. Our analyses provide evidence that the uplifting of the QTP drove early diversification of the Cyprininae. Our extensive sampling of species involving all of the important areas results in clear evolutionary scenario for the Cyprininae.
Fibrosis is the abnormal deposition of extracellular matrix, characterized by accumulation of collagen and other extracellular matrix components, which causes organ dysfunction and even death. Despite advances in understanding fibrosis pathology and clinical management, there is no treatment for fibrosis that can prevent or reverse it, existing treatment options may lead to diarrhea, nausea, bleeding, anorexia, and liver toxicity. Thus, effective drugs are needed for fibrotic diseases. Traditional Chinese medicine has played a vital role in fibrotic diseases, accumulating evidence has demonstrated that Astragalus (Astragalus mongholicus Bunge) can attenuate multiple fibrotic diseases, which include liver fibrosis, pulmonary fibrosis, peritoneal fibrosis, renal fibrosis, cardiac fibrosis, and so on, mechanisms may be related to inhibition of epithelial-mesenchymal transition (EMT), reactive oxygen species (ROS), transforming growth factor beta 1 (TGF-β1)/Smads, apoptosis, inflammation pathways. The purpose of this review was to summarize the pharmacology and mechanisms of Astragalus in treating fibrotic diseases, the data reviewed demonstrates that Astragalus is a promising anti-fibrotic drug, its main anti-fibrotic components are Calycosin, Astragaloside IV, Astragalus polysaccharides and formononetin. We also review formulas that contain Astragalus with anti-fibrotic effects, in which Astragalus and Salvia miltiorrhiza Bunge, Astragalus and Angelica sinensis (Oliv.) Diels are the most commonly used combinations. We propose that combining active components into new formulations may be a promising way to develop new drugs for fibrosis. Besides, we expect Astragalus to be accepted as a clinically effective method of treating fibrosis.
Background The reconstruction of phylogenetic relationships for allopolyploids using genomic data is challenging because hybridization and polyploidy can blur history. In cyprinids, one allopolyploidization event involves goldfish and common carp, yet little is known about the origins of other cyprinid polyploid lineages, including their maternal and paternal ancestral lineages. Results Herein we employ 10 HOX genes, genomic and transcriptomic data of representative species from seven subfamilies in Cyprinidae to investigate the origins of polyploid lineages. Analyses of the nuclear and mitochondria genomes reveal that the Schizothoracinae and Cyprininae share the same maternal common ancestor, and identify the candidate genes for identifying maternal gene-copies from Cyprininae. Gene-trees show a close relationship between Sinocyclocheilus grahami and Cyprininae, and indicate that they share the same whole genome duplication (WGD) event about 12.10 ~ 14.03 Ma. Another allopolyploidization event involves Torinae; one duplication clustering with Schizothoracinae and Schizopygopsinae identifies them as paternal siblings. Further, Labeoninae has a history of recurrent hybridization, which is supported by both gene-trees from genomes and HOX genes. Conclusions Collectively, the diverse WGD history makes Cyprinidae a candidate system for investigating the origin of hybridization and polyploidization in vertebrates. Further investigations should enlarge the representatives, combine morphological traits, and reconstruct gene-trees based on whole-genome markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.