The x wt% graphene-Ti composites (x = 0, 0.2, 0.3 and 0.4) were obtained using the powder metallurgy method. The X-ray diffraction results demonstrated that the peak intensity of graphene increased monotonically with increasing graphene content. Furthermore, the number of grain boundary and interface between graphene and matrix increased as graphene increased, which led to a sharp rise of thermal resistances. The thermal conductivity and specific heat capacity of composites initially decreased drastically with addition of graphene, but then increased with increasing graphene content from 0.2 to 0.4 wt%. This phenomenon was connected with the graphene content and the characteristics of Ti matrix (pores, grain boundary and interface between graphene and matrix). The variation of the compressive strength of composites was attributed to the interaction effects of the average grain size of the Ti matrix (d m ) and the volume fraction (V f ) and aspect ratio (k) of graphene.
The deregulation of fatty acid metabolism plays a crucial role in cancer. However, the prognostic value of genes involved in the metabolism in hepatocellular carcinoma (HCC) remains largely unknown. We first constructed a multi-fatty acid metabolic gene prognostic model of HCC based on The Cancer Genome Atlas (TCGA) and further validated it using the International Cancer Genome Consortium (ICGC) database. The model was integrated with the clinical parameters, and a nomogram was built and weighted. Moreover, immune cell infiltration of the tumor microenvironment was investigated. A prognostic model was constructed using 6 selected fatty acid metabolism-related genes, and HCC patients were divided into high- and low-risk groups. Receiver operating characteristic curve (ROC) analysis, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE) analysis showed the optimal performance of the model. The concordance index (C-index), ROC curve, calibration plot and decision curve analysis (DCA) all confirmed the satisfactory predictive capacity of the nomogram. The analysis of immune cell infiltration in HCC patients revealed a correlation with different risk levels. Our findings indicate that a prognostic model based on fatty acid metabolism-related genes has superior predictive capacities, which provides the possibility for further improving the individualized treatment of patients with HCC.
Real-time RT-PCR assay, based on light upon extension (LUX) fluorogenic primer and LightCycle technology, was developed for rapid detection of transmissible gastroenteritis virus (TGEV). Viral RNA from different TGEV isolates and clinical specimens was detected. To evaluate the sensitivity of the assay, a gel-based RT-PCR method targeted at the same 101 bp sequence was also developed. Serial 10-fold dilutions of TGEV RNA were detected by the two methods. Although the real time method used only 2 microl RNA for each reaction, a 10-fold increase of sensitivity over that of the gel-based method, which used 10 microl RNA was demonstrated. The study indicates that the LUX assay reported below is rapid, reliable and sensitive and it has the potential for use as an alternative molecular method for TGEV diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.