Automated classification of corn is important for corn sorting in intelligent agriculture. This paper presents a reliable corn classification method based on techniques of computer vision and machine learning. To discriminate different damaged types of corns, a line profile segmentation method is firstly used to segment and separate a group of touching corns. Then, twelve color features and five shape features are extracted for each individual corn object. Finally, a maximum likelihood estimator is trained to classify normal and damaged corns. To evaluate the performance of the proposed method, a private dataset consisting of images of normal corn and six kinds of damage corns, including heat-damaged, germ-damaged, cob-rot-damaged, blue eye mold-damaged, insect-damaged, and surface mold-damaged, were collected in this work. The proposed method achieved an accuracy of 96.67% for the classification between normal corns and the first four common damaged corns, and an accuracy of 74.76% was achieved for the classification between normal corns and six kinds of damaged corns. The experimental results demonstrated the effectiveness of the proposed corn classification system.
We propose a multiple-3D-object secure information system for encrypting multiple three-dimensional (3D) objects based on the three-step phase shifting method. During the decryption procedure, five phase functions (PFs) are decreased to three PFs, in comparison with our previous method, which implies that one cross beam splitter is utilized to implement the single decryption interference. Moreover, the advantages of the proposed scheme also include: each 3D object can be decrypted discretionarily without decrypting a series of other objects earlier; the quality of the decrypted slice image of each object is high according to the correlation coefficient values, none of which is lower than 0.95; no iterative algorithm is involved. The feasibility of the proposed scheme is demonstrated by computer simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.