ABC-F proteins have evaded functional characterization even though they comprise one of the most widely distributed branches of the ATP-binding cassette (ABC) superfamily. Herein, we demonstrate that YjjK, the most prevalent eubacterial ABC-F protein, gates ribosome entry into the translation elongation cycle through a nucleotide-dependent interaction sensitive to ATP/ADP ratio. Accordingly, we rename this protein Energy-dependent Translational Throttle A (EttA). We determined the crystal structure of Escherichia coli EttA and used it to design mutants for biochemical studies, including enzymological assays of the initial steps of protein synthesis. These studies suggest that EttA may regulate protein synthesis in energy-depleted cells, which have a low ATP/ADP ratio. Consistent with this inference, ΔettA cells exhibit a severe fitness defect in long-term stationary phase. These studies demonstrate that an ABC-F protein regulates protein synthesis via a novel mechanism sensitive to cellular energy status.
Cells express many ribosome-interacting factors whose functions and molecular mechanisms remain unknown. Here, we elucidate the mechanism of a newly characterized regulatory translation factor, Energy-dependent Translational Throttle A (EttA), which is an Escherichia coli representative of the ATP-binding cassette F (ABC-F) protein family. Using cryo-EM, we demonstrate that the ATP-bound form of EttA binds to the ribosomal tRNA exit (E) site, where it forms bridging interactions between the ribosomal L1 stalk and the tRNA bound in the peptidyl-tRNA binding (P) site. Using single-molecule fluorescence resonance energy transfer (smFRET), we show that the ATP-bound form of EttA restricts ribosome and tRNA dynamics required for protein synthesis. This work represents the first example, to our knowledge, where the detailed molecular mechanism of any ABC-F family protein has been determined and establishes a framework for elucidating the mechanisms of other regulatory translation factors.
One of the most challenging unanswered questions regarding the structural biology of biomolecular machines such as the two-subunit ribosome is whether and how these machines coordinate seemingly independent and random conformational fluctuations to maximize and regulate their functional efficiencies. To address this question, we have used ribosome mutagenesis or a ribosome-targeting antibiotic to predictably perturb the dynamics of intersubunit rotation, a structural rearrangement of the ribosome that is essential for the translocation and ejection of ribosome-bound tRNAs during translation. Concomitantly, we have used single-molecule fluorescence resonance energy transfer (smFRET) to characterize the effects of these perturbations on the dynamics of ribosomal L1 stalk movements and ribosome-bound tRNA reconfigurations, conformational changes that are likewise essential for the translocation and ejection of tRNAs during translation. Together with the results of complementary biochemical studies, our smFRET studies demonstrate that the ribosome uses cooperative conformational changes to maximize and regulate the efficiency with which it translocates and ejects tRNAs during translation. We propose that the ribosome employs cooperative conformational changes to efficiently populate global conformational states that are productive for translation, that translation factors exploit this cooperativity as part of their mechanisms of action, and that antibiotics exploit it to maximize the potency with which they inhibit translation. It is likely that similar cooperative conformational changes underlie the function and regulation of other biomolecular machines. During the catalytic cycle of many enzymes, multiple, spatially distant enzyme structural elements must often undergo functionally important conformational changes (1). Consistent with the view that such structural rearrangements must be rapidly organized and executed to maintain catalytic efficiency, many recent studies strongly suggest that small, monomeric protein enzymes have evolved complex networks of cooperative conformational changes that coordinate the inherently stochastic conformational fluctuations of multiple structural elements in a manner that is optimal for catalysis (2). Within the context of energy landscape theory (3), such enzymes can be thought of as having evolved dynamic energy landscapes that bias enzyme conformational sampling in such a manner to maximize the efficiency of catalysis (2). Related proposals suggest that binding of allosteric effectors to enzymes remodels such energy landscapes, altering enzyme conformational sampling as part of the mechanisms through which these effectors regulate enzymatic activity (4).Unfortunately, the conformational dynamics of large, macromolecular complexes remain much more challenging to characterize than those of small, monomeric proteins (5), making it very difficult to elucidate the role that cooperative conformational changes play in the function and regulation of biomolecular machines such as the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.