In modern society, traffic and transportation and the manufacturing industry and construction industries continuously release large amounts of dust and particles into the atmosphere, which can cause heavy air pollution, leading to health hazards. The haze disaster, a serious problem in developing countries such as China and India, has become one of the main issues of global environmental pollution in recent decades. Many air filtration technologies have been developed. Air filtration using electrospun fibers that intercept fine particles/volatile organic gases/bacterium is a relatively new, but highly promising, technique. Due to their interconnected nanoscale pore structures, highly specific surface areas, fine diameters, and porous structure as well as their ability to incorporate active chemistry on a nanoscale surface, electrospun fibers are becoming a promising versatile platform for air filtration. In this review, following a short introduction concerning the need for air filtration and filtration theory and mechanism, electrospun nanofibers membranes for air filtration have been highlighted, including the preparation (electrospinning process) and the parameters relevant to filtration efficacy. Additionally, various types (function) of the electrospun air filtration membranes have been classified in detail. Furthermore, their potential in the filtration of fine particles and chemical pollutants has been discussed. Finally, the challenges of their practical application and the future prospects have been summarized. Given that some advanced electrospun air filtration nanofibrous membranes exist for treating different contaminants from various types of polluted atmosphere, it is believed that they should make a significant contribution in protection against air pollution.
In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.
In this study, we report the design and fabrication of a novel biocompatible sponge with excellent antibacterial property, making it a promising material for wound dressings. The sponge is formed by grafting amoxicillin onto regenerated bacterial cellulose (RBC). It was observed that the grafted RBC could enhance the antibacterial activity against fungus, Gram-negative, and Gram-positive bacteria. The morphology of strains treated with the grafted RBC and fluorescent stain results further demonstrated the antibacterial ability of the fabricated sponge. Moreover, a cytocompatibility test evaluated in vitro and in vivo illustrates the nontoxicity of the prepared sponge. More importantly, the wound infection model reveals that this sponge can accelerate the wound healing in vivo. This work indicates the novel sponge has the huge potential in wound dressing application for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.