The general concept of tissue engineering is to restore biological function by replacing defective tissues with implantable, biocompatible, and easily handleable cell-laden scaffolds. In this study, osteoinductive and osteoconductive super paramagnetic Fe3O4 nanoparticles (MNP) and hydroxyapatite (HAP) nanoparticles were incorporated into a di-block copolymer based thermo-responsive hydrogel, methoxy(polyethylene glycol)-polyalanine (mPA), at various concentrations to afford composite, injectable hydrogels. Incorporating nanoparticles into the thermo-responsive hydrogel increased the complex viscosity and decreased the gelation temperature of the starting hydrogel. Functionally, the integration of inorganic nanoparticles modulated bio-markers of bone differentiation and enhanced bone mineralization. Moreover, this study adopted the emerging method of using either a supplementary static magnetic field (SMF) or a moving magnetic field to elicit biological response. These results demonstrate that combining external (magnet) and internal (scaffold) magnetisms is a promising approach for bone regeneration.
Blending 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), a high electron affinity organic molecule, with N,N′-bis-(1-naphyl)-N,N′-diphenyl-1,1′-biphenyl′-4,4′-diamine (NPB) creates the charge-transfer-complex molecules and modulates the magnetoconductance (MC) responses of devices by an applied electrical bias. A negative MC response (−0.60%) is observed for the device made of NPB:F4-TCNQ(30%) film as the active layer, which has a distinct characteristic to negligible MC responses in pristine NPB- and F4-TCNQ-based devices. We attribute the MC responses to the magnetic-field-dependent transport of injected charge carriers through charge-transfer-complex molecules in the NPB:F4-TCNQ system, which are varied with the F4-TCNQ blending concentrations and the injection of minority charge carriers. Results of this study demonstrate a turning point of MC responses at the bias voltage near the threshold of the bipolar injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.