a b s t r a c tTo predict regional-scale winter wheat yield, we developed a crop model and data assimilation framework that assimilated leaf area index (LAI) derived from Landsat TM and MODIS data into the WOFOST crop growth model. We measured LAI during seven phenological phases in two agricultural cities in China's Hebei Province. To reduce cloud contamination, we applied Savitzky-Golay (S-G) filtering to the MODIS LAI products to obtain a filtered LAI. We then regressed field-measured LAI on Landsat TM vegetation indices to derive multi-temporal TM LAIs. We developed a nonlinear method to adjust LAI by accounting for the scale mismatch between the remotely sensed data and the model's state variables. The TM LAI and scale-adjusted LAI datasets were assimilated into the WOFOST model to allow evaluation of the yield estimation accuracy. We constructed a four-dimensional variational data assimilation (4DVar) cost function to account for the observations and model errors during key phenological stages. We used the shuffled complex evolution-University of Arizona algorithm to minimize the 4DVar cost function between the remotely sensed and modeled LAI and to optimize two important WOFOST parameters. Finally, we simulated winter wheat yield in a 1-km grid for cells with at least 50% of their area occupied by winter wheat using the optimized WOFOST, and aggregated the results at a regional scale. The scale adjustment substantially improved the accuracy of regional wheat yield predictions (R 2 = 0.48; RMSE = 151.92 kg ha −1 ) compared with the unassimilated results (R 2 = 0.23; RMSE = 373.6 kg ha −1 ) and the TM LAI results (R 2 = 0.27; RMSE = 191.6 kg ha −1 ). Thus, the assimilation performance depends strongly on the LAI retrieval accuracy and the scaling correction. Our research provides a scheme to employ remotely sensed data, ground-measured data, and a crop growth model to improve regional crop yield estimates.
Leaf area index (LAI) and evapotranspiration (ET) are two crucial biophysical variables related to crop growth and grain yield. This study presents a crop model-data assimilation framework to assimilate the 1-km moderate resolution imaging spectroradiometer (MODIS) LAI and ET products (MCD15A3 and MOD16A2, respectively) into the soil water atmosphere plant (SWAP) model to assess the potential for estimating winter wheat yield at field and regional scales. Since the 1-km MODIS products generally underestimate LAI or ET values in fragmented agricultural landscapes due to scale effects and intrapixel heterogeneity, we constructed a new cost function by comparing the generalized vector angle between the observed and modeled LAI and ET time series during the growing season. We selected three parameters (irrigation date, irrigation depth, and emergence date) as the reinitialized parameters to be optimized by minimizing the cost function using the shuffled complex evolution method-University of Arizona (SCE-UA) optimization algorithm, and then used the optimized parameters as inputs into the SWAP model for winter wheat yield estimation. We used four data-assimilation schemes to estimate winter wheat yield at field and regional scales. We found that jointly assimilating MODIS LAI and ET data improved accuracy (R 2 = 0.43, RMSE = 619 kg · ha −1 ) than assimilating MODIS LAI data (R 2 = 0.28, RMSE = 889 kg · ha −1 ) or ET data (R 2 = 0.36, RMSE = 1561 kg · ha −1 ) at the county level, which indicates that the proposed estimation method is reliable and applicable at a county scale.Index Terms-Data assimilation, evapotranspiration (ET), leaf area index (LAI), remote sensing, soil water atmosphere plant (SWAP) model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.