The design and development of space instruments are considered to be distinct from that of other products. It is because the key considerations are vastly different from those that govern the use of products on planet earth. The service life of a space instrument, its use in extreme space environments, size, weight, cost, and the complexity of maintenance must all be considered. As a result, more innovative ideas and resource support are required to assist mankind in space exploration. This article reviews the impact of product design and innovation on the development of space instruments. Using a systematic literature search review and classification, we have identified over 129 papers and finally selected 48 major articles dealing with space instrument product innovation design. According to the studies, it is revealed that product design and functional performance is the main research focuses on the studied articles. The studies also highlighted various factors that affect space instrument manufacturing or fabrication, and that innovativeness is also the key in the design of space instruments. Lastly, the product design is important to affect the reliability of the space instrument. This review study provides important information and key considerations for the development of smart manufacturing technologies for space instruments in the future.
The authors proposed an anatomy-based methodology for human modeling to enhance the visual realism of human modeling by using the boundary element method (BEM) and axial deformation approach. To model muscle deformation, a BEM with linear boundary elements was used. The significance of tendons in determining skin layer deformation is also discussed. The axial deformation technique is used to allow for quick deformation. To control tendon deformation, the curve of the axial curve is changed. Each vertex of the skin layer is linked to the muscles, tendons, and skeletons beneath it. The skin layer deforms in response to changes in the underlying muscle, tendon, and skeleton layers. This chapter made use of human foot modeling as the case study. Results have illustrated that the visual realism of human models can be enhanced by considering the changes of tendons in the deformation of the skin layer. The lower computational complexity and enhanced visual realism of the proposed approaches can be applied in human modelling for virtual reality (VR) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.