Precipitation nowcasting plays a key role in land security and emergency management of natural calamities. A majority of existing deep learning-based techniques realize precipitation nowcasting by learning a deep nonlinear function from a single information source, e.g., weather radar. In this study, we propose a novel multimodal semisupervised deep graph learning framework for precipitation nowcasting. Unlike existing studies, different modalities of observation data (including both meteorological and nonmeteorological data) are modeled jointly, thereby benefiting each other. All information is converted into image structures, next, precipitation nowcasting is deemed as a computer vision task to be optimized. To handle areas with unavailable precipitation, we convert all observation information into a graph structure and introduce a semisupervised graph convolutional network with a sequence connect architecture to learn the features of all local areas. With the learned features, precipitation is predicted through a multilayer fully connected regression network. Experiments on real datasets confirm the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.