Here we demonstrate a molecular trap structure that can be formed to capture analyte molecules in solution for detection and identification. The structure is based on gold-coated nanoscale polymer fingers made by nanoimprinting technique. The nanofingers are flexible and their tips can be brought together to trap molecules, while at the same time the gold-coated fingertips form a reliable Raman hot spot for molecule detection and identification based on surface enhanced Raman spectroscopy (SERS). The molecule self-limiting gap size control between fingertips ensures ultimate SERS enhancement for sensitive molecule detection. Furthermore, these type of structures, resulting from top-down meeting self-assembly, can be generalized for other applications, such as plasmonics, meta-materials, and other nanophotonic systems.
Resist adhesion to the mold is one of the challenges for nanoimprint lithography. The main approach to overcoming it is to apply a self-assembled monolayer of an organosilane release agent to the mold surface, either in the solution phase or vapor phase. We compared the atomic force microscopy, ellipsometry, reflection-absorption infrared spectroscopy, and contact angle results collected from substrates treated by two different application processes and found that the vapor-phase process was superior. The vapor-treated substrates had fewer aggregates of the silane molecules on the surface, because the lower density of the agent in the vapor phase was not conducive to aggregation formation, and received a superior coating of the releasing agent, because the vapor was more effective than the solution in penetrating into the nanoscale gaps of the mold. A pattern transfer of 20 parallel nanowires with a line width of 40 nm at 100 nm pitch-size was performed faithfully with the vapor-treated mold without any resist adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.