ObjectivesIn this study, we aim to determine the effect of metformin on osteoarthritis (OA) development and progression.MethodsDestabilisation of the medial meniscus (DMM) surgery was performed in 10-week-old wild type and AMP-activated protein kinase (AMPK)α1 knockout (KO) mice. Metformin (4 mg/day in drinking water) was given, commencing either 2 weeks before or 2 weeks after DMM surgery. Mice were sacrificed 6 and 12 weeks after DMM surgery. OA phenotype was analysed by micro-computerised tomography (μCT), histology and pain-related behaviour tests. AMPKα1 (catalytic alpha subunit of AMPK) expression was examined by immunohistochemistry and immunofluorescence analyses. The OA phenotype was also determined by μCT and MRI in non-human primates.ResultsMetformin upregulated phosphorylated and total AMPK expression in articular cartilage tissue. Mild and more severe cartilage degeneration was observed at 6 and 12 weeks after DMM surgery, evidenced by markedly increased Osteoarthritis Research Society International scores, as well as reduced cartilage areas. The administration of metformin, commencing either before or after DMM surgery, caused significant reduction in cartilage degradation. Prominent synovial hyperplasia and osteophyte formation were observed at both 6 and 12 weeks after DMM surgery; these were significantly inhibited by treatment with metformin either before or after DMM surgery. The protective effects of metformin on OA development were not observed in AMPKα1 KO mice, suggesting that the chondroprotective effect of metformin is mediated by AMPK signalling. In addition, we demonstrated that treatment with metformin could also protect from OA progression in a partial medial meniscectomy animal model in non-human primates.ConclusionsThe present study suggests that metformin, administered shortly after joint injury, can limit OA development and progression in injury-induced OA animal models.
Intervertebral disc degeneration (Idd) is an important cause of lower back pain, although the underlying mechanisms remain poorly understood. The present study aimed to examine the role of a circular RNA derived from tissue inhibitor of metallopeptidases 2 (circ-TIMP2) in degenerative nucleus pulposus (NP) tissues, and to validate its function in cultured human NP cells. Overexpression of miR-185-5p in NP cells markedly inhibited the enhanced extracellular matrix (EcM) catabolism induced by tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) treatment. Bioinformatics analysis demonstrated that matrix metalloproteinase 2 (MMP2) was a potential target of miR-185-5p. MMP2 protein expression levels were increased following treatment with TNF-α and IL-1β in NP cells compared with those in untreated cells, and this effect was attenuated by transfection with miR-185-5p. compared with normal NP tissues, Idd samples exhibited higher circ-TIMP2 expression levels. In addition, overexpression of circ-TIMP2 promoted EcM catabolism and suppressed EcM anabolism. Furthermore, circ-TIMP2 sequestered miR-185-5p, which may potentially upregulate the target genes associated with EcM degradation. In conclusion, the results of the present study revealed that circ-TIMP2 promoted TNF-αand IL-1β-induced NP cell imbalance between EcM anabolism and catabolism via miR-185-5p-MMP2 signaling. These findings provide a potential therapeutic option for the treatment of Idd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.