Most recent sentence simplification systems use basic machine translation models to learn lexical and syntactic paraphrases from a manually simplified parallel corpus. These methods are limited by the quality and quantity of manually simplified corpora, which are expensive to build. In this paper, we conduct an in-depth adaptation of statistical machine translation to perform text simplification, taking advantage of large-scale paraphrases learned from bilingual texts and a small amount of manual simplifications with multiple references. Our work is the first to design automatic metrics that are effective for tuning and evaluating simplification systems, which will facilitate iterative development for this task.
Simple Wikipedia has dominated simplification research in the past 5 years. In this opinion paper, we argue that focusing on Wikipedia limits simplification research. We back up our arguments with corpus analysis and by highlighting statements that other researchers have made in the simplification literature. We introduce a new simplification dataset that is a significant improvement over Simple Wikipedia, and present a novel quantitative-comparative approach to study the quality of simplification data resources.
This paper presents the results of the two shared tasks associated with W-NUT 2015: (1) a text normalization task with 10 participants; and (2) a named entity tagging task with 8 participants. We outline the task, annotation process and dataset statistics, and provide a high-level overview of the participating systems for each shared task.
While end-to-end neural machine translation (NMT) has made remarkable progress recently, NMT systems only rely on parallel corpora for parameter estimation. Since parallel corpora are usually limited in quantity, quality, and coverage, especially for low-resource languages, it is appealing to exploit monolingual corpora to improve NMT. We propose a semisupervised approach for training NMT models on the concatenation of labeled (parallel corpora) and unlabeled (monolingual corpora) data. The central idea is to reconstruct the monolingual corpora using an autoencoder, in which the sourceto-target and target-to-source translation models serve as the encoder and decoder, respectively. Our approach can not only exploit the monolingual corpora of the target language, but also of the source language. Experiments on the ChineseEnglish dataset show that our approach achieves significant improvements over state-of-the-art SMT and NMT systems.
A major challenge in paraphrase research is the lack of parallel corpora. In this paper, we present a new method to collect large-scale sentential paraphrases from Twitter by linking tweets through shared URLs. The main advantage of our method is its simplicity, as it gets rid of the classifier or human in the loop needed to select data before annotation and subsequent application of paraphrase identification algorithms in the previous work. We present the largest human-labeled paraphrase corpus to date of 51,524 sentence pairs and the first cross-domain benchmarking for automatic paraphrase identification. In addition, we show that more than 30,000 new sentential paraphrases can be easily and continuously captured every month at ∼70% precision, and demonstrate their utility for downstream NLP tasks through phrasal paraphrase extraction. We make our code and data freely available. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.