A simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS) is presented. A coating of liquid PDMS is applied on the walls of rectangular microchannels, fabricated using standard soft-lithography, by introducing a pressurized air stream inside the PDMS filled microchannels. Surface tension of the liquid PDMS forces the coating to take a circular cross-section which is preserved by baking the device to cure the coated layer. Diameters ranging from a few micrometres to a few hundreds of micrometres were achieved. The method was verified to work on microchannel networks as well as in straight channels. Different coating conditions were systematically tested. Design curves are reported for one to choose appropriate coating conditions for obtaining a desired diameter. A comparison between the performance of square and circular microchannels in trapping SiHa cells (cervical cancer cell line) is shown.
This paper presents the use of electrodeformation as a method for single cell mechanical characterization in which mechanical properties of SiHa and ME180 cells (two cervical cancer cell lines) were quantified. Cells were directly placed between two microelectrodes with a rectangular ac electric field applied, and cell deformation was recorded under certain experimental conditions. Numerical simulations were performed to model cell electrodeformation based on the Maxwell stress tensor formulation. In these simulations, effects of cell electrical property variations on their electrodeformed behavior were investigated. By comparing the measured morphological changes with those obtained from numerical simulations, we were able to quantify Young's modulus of SiHa cells (601 ± 183 Pa) and ME180 cells (1463 ± 649 Pa). These values were consistent with Young's modulus values (SiHa: 400 ± 290 Pa and ME180: 1070 ± 580 Pa) obtained from conventional micropipette aspiration.
An eigenvector analysis based algorithm is presented for estimating refractive index changes from 2-D reflectance/dispersion images obtained with spectro-angular surface plasmon resonance systems. High resolution over a large dynamic range can be achieved simultaneously. The method performs well in simulations with noisy data maintaining an error of less than 10(-8) refractive index units with up to six bits of noise on 16 bit quantized image data. Experimental measurements show that the method results in a much higher signal to noise ratio than the standard 1-D weighted centroid dip finding algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.