A microfluidic device with an all-solid-state potentiometric biosensor array was developed using microfabrication technology. The sensor array included a pH indicator, and potassium and calcium ion-selective microelectrodes. The pH indicator was an iridium oxide thin film modified platinum microelectrode and the iridium oxide was deposited by an electrochemical method. The potassium and calcium ion-selective microelectrodes were platinum coated with silicon rubber based ion-selective membranes with respectively potassium (valinomycin) and calcium (ETH 1001) ionophores. The detection system was integrated with a micro-pneumatic pump which can continuously drive fluids into the microchannel through sensors at flow rates ranging from 52.4 microl min(-1) to 7.67 microl min(-1). The sensor array microfluidic device showed near-Nernstian responses with slopes of 62.62 mV +/- 2.5 mV pH(-1), 53.76 mV +/- 3 mV -log[K+](-1) and 25.77 mV +/- 2 mV -log[Ca2+](-1) at 25 degrees C +/- 5 degrees C, and a linear response within the pH range of 2-10, with potassium and calcium concentrations between 0.1 M and 10(-6) M. In this study the device provided a convenient way to measure the concentration of hydrogen, potassium and calcium ions, which are important physiological parameters.
The detection and quantification of triglyceride (TG) using an iridium nano-particle modified carbon based biosensor was successfully carried out in this study. The detection procedures were based on the electrochemical detection of enzymatically produced NADH. TG was hydrolyzed by lipase and the glycerol produced was catalytically oxidized by NAD-dependent glycerol dehydrogenase producing NADH in a solution containing NAD(+). Glyceryl tributyrate, a short chain triglyceride, was chosen as the substrate for the evaluation of this TG biosensor in bovine serum and human serum. A linear response to glyceryl tributyrate in the concentration range of 0 to 10 mM and a sensitivity of 7.5 nA mM(-1) in bovine serum and 7.0 nA mM(-1) in human serum were observed experimentally. The potential interference of species such as uric acid (UA) and ascorbic acid (AA) was assessed. The incorporation of a selected surfactant and an increase in the incubation temperature appeared to enhance the performance of this biosensor. The conditions for the determination of TG levels in bovine serum using this biosensor were optimized, with sunflower seed oil being used as an analyte to simulate the detection of TG in blood. The experimental results demonstrated that this iridium nano-particle modified working electrode based biosensor provided a relatively simple means for the accurate determination of TG in serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.