The drop size distribution (DSD) and drop shape relation (DSR) characteristics that were observed by a ground-based 2D video disdrometer and retrieved from a C-band polarimetric radar in the typhoon systems during landfall in the western Pacific, near northern Taiwan, were analyzed. The evolution of the DSD and its relation with the vertical development of the reflectivity of two rainband cases are fully illustrated. Three different types of precipitation systems were classified—weak stratiform, stratiform, and convective—according to characteristics of the mass-weighted diameter Dm, the maximum diameter, and the vertical structure of reflectivity. Further study of the relationship between the height H of the 15-dBZ contour of the vertical reflectivity profile, surface reflectivity Z, and the mass-weighted diameter Dm showed that Dm increased with a corresponding increase in the system depth H and reflectivity Z. An analysis of DSDs retrieved from the National Central University (NCU) C-band polarimetric radar and disdrometer in typhoon cases indicates that the DSDs from the typhoon systems on the ocean were mainly a maritime convective type. However, the DSDs collected over land tended to uniquely locate in between the continental and maritime clusters. The average mass-weighted diameter Dm was about 2 mm and the average logarithmic normalized intercept Nw was about 3.8 log10 mm−1 m−3 in typhoon cases. The unique terrain-influenced deep convective systems embedded in typhoons in northern Taiwan might be the reason for these characteristics. The “effective DSR” of typhoon systems had an axis ratio similar to that found by E. A. Brandes et al. when the raindrops were less than 1.5 mm. Nevertheless, the axis ratio tended to be more spherical with drops greater than 1.5 mm and under higher horizontal winds (maximum wind speed less than 8 m s−1). A fourth-order fitting DSR was derived for typhoon systems and the value was also very close to the estimated DSR from the polarimetric measurements in Typhoon Saomai (2006).
Dual-Doppler, polarimetric radar observations and precipitation efficiency (PE) calculations are used to analyze subtropical heavy rainfall events that occurred in southern Taiwan from 14 to 17 June 2008 during the Southwest Monsoon Experiment/Terrain-Influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX) field campaign. Two different periods of distinct precipitation systems with diverse kinematic and microphysical characteristics were investigated: 1) prefrontal squall line (PFSL) and 2) southwesterly monsoon mesoscale convective system (SWMCS). The PFSL was accompanied by a low-level front-to-rear inflow and pronounced vertical wind shear. In contrast, the SWMCS had a low-level southwesterly rear-to-front flow with a uniform vertical wind field. The PFSL (SWMCS) contained high (low) lightning frequency associated with strong (moderate) updrafts and intense graupel-rain/graupel-small hail mixing (more snow and less graupel water content) above the freezing level. It is postulated that the reduced vertical wind shear and enhanced accretional growth of rain by high liquid water content at low levels in the SWMCS helped produce rainfall more efficiently (53.1%). On the contrary, the deeper convection of the PFSL had lower PE (45.0%) associated with the evaporative loss of rain and the upstream transport of liquid water to form larger stratiform regions. By studying these two events, the dependence of PE on the environmental and microphysical factors of subtropical heavy precipitation systems are investigated by observational data for the first time. Overall, the PE of the convective precipitation region (47.9%) from 14 to 17 June is similar to past studies of convective precipitation in tropical regions.
Data collected by the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) in Taiwan are analyzed and used to infer storm microphysics in the ice phase of convective storms. Both simultaneous horizontal (H) and vertical (V) (SHV) transmit polarization data and fast-alternating H and V (FHV) transmit polarization data are used in the analysis. The SHV Z dr (differential reflectivity) data show radial stripes of biased data in the ice phase that are likely caused by aligned and canted ice crystals. Similar radial streaks in the linear depolarization ratio (LDR) are presented that are also biased by the same mechanism. Dual-Doppler synthesis and sounding data characterize the storm environment and support the inferences concerning the ice particle types. Small convective cells were observed to have both large positive and large negative K dp (specific differential phase) values. Negative K dp regions suggest that ice crystals are vertically aligned by electric fields. Since high jK dp j values of 0.88 km 21 in both negative and positive K dp regions in the ice phase are accompanied by Z dr values close to 0 dB, it is inferred that there are two types of ice crystals present: 1) smaller aligned ice crystals that cause the K dp signatures and 2) larger aggregates or graupel that cause the Z dr signatures. The inferences are supported with simulated ice particle scattering calculations. A radar scattering model is used to explain the anomalous radial streaks in SHV Z dr and LDR.
[1] This study evaluates the simulated cloud properties, especially the simulated raindrop size distribution, by the Chinese Academy of Meteorological Sciences bulk microphysics scheme (CAMS BMS) and two other two-moment microphysics schemes (Morrison and WDM6) in the Weather Research and Forecasting model (WRF v3.1). Measurements from a mesoscale convective system that occurred on 14 June 2008 during the Southwest Monsoon Experiment (SoWMEX) and Terrain-influenced Monsoon Rainfall Experiment (TiMREX) are used. The model reflectivity (Z H ), differential reflectivity (Z DR ), and microwave brightness temperature (T B ) are compared with the corresponding observations by the S band dual-polarization Doppler radar (S-Pol) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). Results show that the simulated Z DR , which is sensitive to the drop size distribution (DSD) of raindrops, from the original CAMS BMS and Morrison schemes are larger than those from the S-Pol observations. On the other hand, the simulated Z DR values from the WDM6 scheme are smaller than the radar observations. To improve the model results, modifications are made by controlling the intercept parameter of raindrop DSD and by increasing the raindrop breakup rates in the original CAMS BMS scheme. The modifications reduce the raindrop size and consequently increase the rain evaporation rate. The improved simulations of Z H and Z DR indicate that the modified CAMS BMS scheme adequately simulates the amount and size of liquid hydrometeors. Moreover, the simulated brightness temperatures at liquid water absorption frequency and the simulated surface precipitation rates are also significantly improved by using the modified CAMS BMS scheme.
In this work, long-term (10 years) raindrop size distribution (RSD) measurements from the Joss-Waldvogel Disdrometer (JWD) installed at the National Central University (NCU) (24°58′6″N, 121°11′27″E), Taiwan, and the vertical profile of radar reflectivity were used to analyze the variations in the gamma parameters of six seasons (winter, spring, mei-yu, summer, typhoon, and autumn) and types of precipitation. The normalized gamma distribution of RSD revealed that the highest mean D m (mass-weighted average diameter) values occurred in the summer, whereas the highest mean log 10 N w (normalized intercept parameter) values were found in the winter. Furthermore, most of the rain falling at a rate of less than 20 mm h −1 occurs in Northern Taiwan. In this study, we used radar reflectivity to differentiate between convective and stratiform systems. It was revealed that the mean D m values are higher in convective systems, whereas the mean log 10 N w values are higher in stratiform systems. The structure of RSD in stratiform systems remains constant in all seasons; however, convection is similar
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.