Monolayer transition metal dichalcogenides (TMDCs) have large second‐order optical nonlinearity owing to broken inversion symmetry in two‐dimensional (2D) crystals. However, despite the strong light–matter coupling in monolayer TMDCs, their nonlinear responses are ultimately limited by subnanometer thickness. Here, a dramatic enhancement of the second‐harmonic generation (SHG) is achieved from monolayer tungsten disulfide (WS2) incorporated onto a 2D silver (Ag) nanogroove grating with subwavelength pitch. By tuning surface plasmon mode and second‐harmonic frequency in resonance with the C exciton in WS2, a large SHG enhancement factor (≈400) and a large conversion efficiency (≈2.0 × 10–5) can be obtained. Furthermore, the azimuthal angle dependence of polarized SHG from monolayer WS2 can be manipulated by the nanogroove plasmonic mode. Based on this property, a polarization‐modulated optical encoding technique is demonstrated. The results suggest that 2D TMDC–plasmonic hybrid metasurface structures can provide an ideal integration platform for on‐chip nonlinear photonics and plasmonics.
Two-dimensional spiral plasmonic structures have emerged as a versatile approach to generate near-field vortex fields with tunable topological charges. We demonstrate here a far-field approach to observe the chiral second-harmonic generation (SHG) at designated visible wavelengths from a single plasmonic vortex metalens. This metalens comprises an Archimedean spiral slit fabricated on atomically flat aluminum epitaxial film, which allows for precise tuning of plasmonic resonances and subsequent transfer of two-dimensional materials on top of the spiral slit. The nonlinear optical measurements show a giant SHG circular dichroism. Furthermore, we have achieved an enhanced chiral SHG conversion efficiency (about an order of magnitude greater than the bare aluminum lens) from monolayer tungsten disulfide (WS 2 )/aluminum metalens, which is designed at the C-exciton resonance of WS 2 . Since the C-exciton is not a valley exciton, the enhanced chiral SHG in this hybrid system originates from the plasmonic vortex field-enhanced SHG under the optical spin−orbit interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.