During the transitional processes of load rejection in a pumped-storage station, the S-shaped characteristics of the pump-turbines can result in relatively large water-hammer and pulsating pressures. These pressures and the high runaway speed during transient processes may directly damage the penstocks and shorten the life of the turbine. In this study, different guide-vane closing schemes for reducing the maximum transient pressures, including the water-hammer and pulsating pressures, and runaway speed were investigated, and the principles for improving the closing schemes were theoretically analyzed based on the transient characteristics in the S-shaped region. First, an analytical expression for the rate of change of relative water head during the transitional processes was deduced based on a simplified mathematical model. It reveals the relationship between the slopes of the trajectory at the pump-turbine operating points (defined as trajectory slopes) and the rigid water-column pressure, which approximates the water-hammer pressure considering compressibility. Then, based on the characteristics of the rigid water-column pressure during the transient process and the effects of guide-vane closure on the trajectory slopes, the selection method for a two-phase guide-vane closing scheme was proposed. The method included the technique for choosing the coordinates of the turning point and the closing speed of the guide vane. Furthermore, the pulsating pressures of pump-turbines were discussed under different working regions and guide-vane openings (GVOs). Considering the characteristics of the pulsating pressures and the runaway speed during the transient processes, the advantage of three-phase valve-closing schemes in controlling the pulsating pressures and the runaway speed was clarified. Finally, a series of model tests were conducted on a pumped-storage station model and the measured data fully validated the correctness of our analyses in this work.
This paper presents a mathematical model of hydro power units, especially the governor system model for different operating conditions, based on the basic version of the software TOPSYS. The mathematical model consists of eight turbine equations, one generator equation, and one governor equation, which are solved for ten unknown variables. The generator and governor equations, which are different under various operating conditions, are presented and discussed in detail. All the essential non-linear factors in the governor system (dead-zone, saturation, rate limiting, and backlash) are also considered. Case studies are conducted based on one Swedish hydro power plant (HPP) and three Chinese plants. The simulation and on-site measurements are compared for start-up, no-load operation, normal operation, and load rejection in different control modes (frequency, opening, and power feedback). The main error in each simulation is also discussed in detail. As a result, the model application is proved trustworthy for simulating different physical quantities of the unit (e.g., guide vane opening, active power, rotation speed, and pressures at volute and draft tube). The model has already been applied effectively in consultant analyses and scientific studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.