Owing to the toxicity and adverse effects of arsenic on human health, its levels in aquatic environments are among the most serious threats to humans globally. To improve our understanding of its occurrence and cycling in aquatic environments, herein we review the concentration, speciation, and distribution of arsenic in freshwater, seawater, and sediments. Many natural processes, such as rock weathering and geothermal activities, contribute to the background arsenic concentrations in the natural environment, whereas metal mining and smelting are anthropogenic sources of arsenic in the water. The high solubility and mobility of arsenic in aquatic environments affects its global cycling. Furthermore, the biological processes in the aquatic environment are discussed, especially the possible microbe-mediated reactions of arsenic in sediments. In addition, various environmental factors, such as redox conditions, pH, and salinity, which influence the transformation of arsenic species, are summarized. Finally, the differences between freshwater and seawater with reference to the concentration as well as speciation and distribution patterns of arsenic are addressed. This review provides deep insights into arsenic occurrence and cycling between freshwater and seawater aquatic environments, which can more accurately distinguish the risks of arsenic in different water environments, and provides theoretical guidance for the prevention and control of arsenic risks.
Arsenic (As) is extremely toxic to living organisms at high concentrations. Arsenobetaine (AsB), confirmed to be a non-toxic form, is the main contributor to As in the muscle tissue of marine fish. However, few studies have investigated the biotransformation and biodegradation of AsB in mammals. In the current study, C57BL/6J mice were fed four different diets, namely, Yangjiang and Zhanjiang fish diets spiked with marine fish muscle containing AsB, and arsenite (As(III)) and arsenate (As(V)) diets spiked with As(III) and As(V), respectively, to investigate the biotransformation and bioaccumulation of AsB in mouse tissues for 42 d. Different diets exhibited different As species distributions, which contributed to varying levels of As bioaccumulation in different tissues. The intestines accumulated the highest level of As, regardless of form, which played a major part in As absorption and distribution in mice. We observed a significant biotransformation of AsB to As(V) following its diet exposure, and the liver, lungs, and spleen of AsB-treated mice showed higher As accumulation levels than those of As(III)- or As(V)-treated mice. Inorganic As showed relatively high accumulation levels in the lungs and spleen after long-term exposure to AsB. Overall, these findings provided strong evidence that AsB undergoes biotransformation to As(V) in mammals, indicating the potential health risk associated with long-term AsB intake in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.