We developed a hyperspectral imaging tool based on surface-enhanced Raman spectroscopy (SERS) probes to determine the expression level and visualize the distribution of PD-L1 in individual cells. Electron-microscopic analysis of PD-L1 antibody - gold nanorod conjugates demonstrated binding the cell surface and internalization into endosomal vesicles. Stimulation of cells with IFN-γ or metformin was used to confirm the ability of SERS probes to report treatment-induced changes. The multivariate curve resolution-alternating least squares (MCR-ALS) analysis of spectra provided a greater signal-noise ratio than single peak mapping. However, single peak mapping allowed a systematic subtraction of background and the removal of non-specific binding and endocytic SERS signals. The mean or maximum peak height in the cell or the mean peak height in the area of specific PD-L1 positive pixels was used to estimate the PD-L1 expression levels in single cells. The PD-L1 levels were significantly up-regulated by IFN-γ and inhibited by metformin in human lung cancer cells from the A549 cell line. In conclusion, the method of analyzing hyperspectral SERS imaging data together with systematic and comprehensive removal of non-specific signals allows SERS imaging to be a quantitative tool in the detection of the cancer biomarker, PD-L1.
Raman spectra acquired from a single living cell were analyzed by a machine learning based algorithm and transformed into aggressiveness score, and further paired with gene expression data for correlation analysis.
Background
Osteosarcoma is a malignant bone tumor with a high rate of lung metastasis and mortality. It has been demonstrated that resveratrol can inhibit tumor proliferation and metastasis, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare folate-modified liposomes loaded with resveratrol to investigate its anti-osteosarcoma effect in vitro and in vivo.
Methods
We prepared and characterized resveratrol liposomes modified with folate (denoted as, FA-Res/Lps). The effects of FA-Res/Lps on human osteosarcoma cell 143B proliferation, apoptosis, and migration were investigated by MTT, cell cloning, wound-healing assay, transwell, and flow cytometry. A xenograft tumor and lung metastasis model of osteosarcoma was constructed to study the therapeutic effects of FA-Res/Lps on the growth and metastasis of osteosarcoma in vivo.
Results
The FA-Res/Lps were prepared with a particle size of 118.5 ± 0.71 and a small dispersion coefficient of 0.154 ± 0.005. We found that FA-modified liposomes significantly increased resveratrol uptake by osteosarcoma cells 143B in flow cytometric assay, resulting in FA-Res/Lps, which inhibit tumor proliferation, migration and induce apoptosis more effectively than free Res and Res/Lps. The mechanism of action may be associated with the inhibition of JAK2/STAT3 signaling. In vivo imaging demonstrated that FA-modified DiR-modified liposomes significantly increased the distribution of drugs at the tumor site, leading to significant inhibition of osteosarcoma growth and metastasis by FA-Res/Lps. Furthermore, we found that FA-Res/Lps did not cause any adverse effects on mice body weight, liver, or kidney tissues.
Conclusion
Taken together, the anti-osteosarcoma effect of resveratrol is significantly enhanced when it is loaded into FA-modified liposomes. FA-Res/Lps is a promising strategy for the treatment of osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.