Atherosclerotic plaques can gradually develop in certain arteries. Disruption of fibrous tissue in plaques can result in plaque rupture and thromboembolism, leading to heart attacks and strokes. Collagen fibrils are important tissue building blocks and tissue strength depends on how fibrils are oriented. Fibril orientation in plaque tissue may potentially influence vulnerability to disruption. While X-ray scattering has previously been used to characterize fibril orientations in soft tissues and bones, it has never been used for characterization of human atherosclerotic plaque tissue. This study served to explore fibril orientation in specimens from human plaques using small angle X-ray scattering. Plaque tissue was extracted from human femoral and carotid arteries, and each tissue specimen contained a region of calcified material. 3D collagen fibril orientation was determined along scan lines that started away from and then extended towards a given calcification. At locations several millimeters or more from a calcification, fibrils were found to be oriented predominantly in the circumferential direction of the plaque tissue. However, in a number of cases, the dominant fibril direction changed markedly near a calcification, from circumferential to longitudinal. Further study is needed to elucidate how these fibril patterns may change plaque tissue behavior.
Many crawling organisms such as caterpillars and worms use a method of movement in which two or more anchor points alternately push and pull the body forward at a constant frequency. In this paper we present a milliscale push–pull robot which is capable of operating across a wide range of actuation frequencies thus enabling us to expand our understanding of two-anchor locomotion beyond the low-speed regime. We designed and fabricated a milliscale robot which uses anisotropic friction at two oscillating contact points to propel itself forward in a push–pull fashion. In experiments we varied the oscillation frequency, f, over a wide range (10–250 Hz) and observe a non-linear relationship between robot speed over this full frequency range. At low frequency (f < 100 Hz) forward speed increased linearly with frequency. However, at an intermediate push–pull frequency (f > 100 Hz) speed was relatively constant with increasing frequency. Lastly, at higher frequency (f > 170 Hz) the linear speed–frequency relationship returned. The speed–frequency relationship at low actuation frequencies is consistent with previously described two-anchor models and experiments in biology and robotics, however the higher frequency behavior is inconsistent with two-anchor frictional behavior. To understand the locomotion behavior of our system we first develop a deterministic two-anchor model in which contact forces are determined exactly from static or dynamic friction. Our experiments deviate from the model predictions, and through 3D kinematics measurements we confirm that ground contact is intermittent in robot locomotion at higher frequencies. By including probabilistic foot slipping behavior in the two-anchor friction model we are able to describe the three-regimes of robot locomotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.