Efficient and reasonable utilization of waste biomass resources can not only avoid serious waste of material resources, but also solve the problem of environmental pollution. Therefore, the development of efficient and environmentally friendly waste biomass carbonization technology has important practical significance. Here, the activated carbon from orange peel (OAC) is prepared by potassium hydroxide (KOH) activation combined with high-temperature carbonization. The adsorption effects of OAC on three different pollutant aqueous solutions, methylene blue (MB), tetracycline (TC), and fluorescein sodium (NaFL), are examined. The OAC absorbent has excellent adsorption capacity for MB, TC, and NaFL pollutants of 10 mg L−1, with adsorption rates of 99.17%, 73.5%, and 94.24%, respectively. This study provides a new idea for turning waste biomass into treasure and eliminating the hidden danger of environmental pollution.
The development of non-precious metal catalysts with excellent bifunctional activities is significant for air–metal batteries. ABO3-type perovskite oxides can improve their catalytic activity and electronic conductivity by doping transition metal elements at B sites. Here, we develop a novel Sm0.5Sr0.5Co1−xNixO3−δ (SSCN) nanofiber-structured electrocatalyst. In 0.1 M KOH electrolyte solution, Sm0.5Sr0.5Co0.8Ni0.2O3−δ (SSCN82) with the optimal Co: Ni molar ratio exhibits good electrocatalytic activity for OER/ORR, affording a low onset potential of 1.39 V, a slight Tafel slope of 123.8 mV dec−1, and a current density of 6.01 mA cm−2 at 1.8 V, and the ORR reaction process was four-electron reaction pathway. Combining the morphological characteristic of SSCN nanofibers with the synergistic effect of cobalt and nickel with a suitable molar ratio is beneficial to improving the catalytic activity of SSCN perovskite oxides. SSCN82 exhibits good bi-functional catalytic performance and electrochemical double-layer capacitance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.