In this paper, an optimal-damage-effectiveness cooperative-control strategy based on a damage-efficiency model and a virtual-force method is proposed to solve the pursuit–evasion problem with multiple guided missiles. Firstly, different from the overly ideal assumption in the traditional pursuit–evasion problem, an optimization problem that maximizes the damage efficiency is established and solved, making the optimal-damage-effectiveness strategy more meaningful for practical applications. Secondly, a modified virtual-force method is proposed to obtain this optimal-damage-effectiveness control strategy, which solves the numerical solution challenges brought by the high-complexity damage function. Thirdly, adaptive gain is designed in this strategy based on guidance-integrated fuze technology to achieve robust maximum damage efficiency in unpredictable interception conditions. Finally, the effectiveness and robustness of the proposed strategy are verified by numerical simulations.
This paper is concerned with the estimation of correlated noise and packet dropout for information fusion in distributed sensing networks. By studying the problem of the correlation of correlated noise in sensor network information fusion, a matrix weight fusion method with a feedback structure is proposed to deal with the interrelationship between multi-sensor measurement noise and estimation noise, and the method can achieve optimal estimation in the sense of linear minimum variance. Based on this, a method is proposed using a predictor with a feedback structure to compensate for the current state quantity to deal with packet dropout that occurs during multi-sensor information fusion, which can reduce the covariance of the fusion results. Simulation results show that the algorithm can solve the problem of information fusion noise correlation and packet dropout in sensor networks, and effectively reduce the fusion covariance with feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.