The amphipathic molecule dimethyl sulphoxide (DMSO) is a solvent often used to dissolve compounds applied to the inner ear; however, little is known about its potential cytotoxic side effects. To address this question, we applied 0.1 to 6% DMSO for 24 h to cochlear organotypic cultures from postnatal day 3 rats and examined its cytotoxic effects. DMSO concentrations of 0.1% and 0.25% caused little or no damage. However, concentrations between 0.5 and 6% resulted in stereocilia damage, hair cell swelling and a dose-dependent loss of hair cells. Hair cell damage began in the basal turn of the cochlea and spread towards the apex with increasing concentration. Surprisingly, DMSO-induced damage was greater for inner hair cells than outer hair cell whereas nearby supporting cells were largely unaffected. Most hair cell death was associated with nuclear shrinkage and fragmentation, morphological features consistent with apoptosis. DMSO treatment induced TUNEL positive staining in many hair cells and activated both initiator caspase-9 and caspase-8 and executioner caspase-3; this suggests that apoptosis is initiated by both intrinsic mitochondrial and extrinsic membrane cell death signaling pathways.
Background: microRNAs (miRNAs) are small non-coding RNAs and have been shown to play a crucial role in the colorectal cancer (CRC) tumorigenesis and progression. The aim of this study was to investigate the clinical significance and prognostic value of miR-140-5p in CRC. The exact functions and the underlying molecular mechanisms of miR-140-5p in CRC was further determined. Methods: miR-140-5p expression was detected in CRC samples, their adjacent nontumor tissues as well as CRC cell lines by RT-qPCR. Cell proliferation was detected using CCK-8, and cell invasion and migration were evaluated using Transwell assay. The direct regulation of VEGFA by miR-140-5p was identified using luciferase reporter assay. Results: miR-140-5p was significantly dowregulated in CRC tissues and cell lines. Downregulation of miR-140-5p was significantly correlated with advanced CRC stage and poorer overall survival. Both gain-of-function and loss of function studies demonstrated that miR-140-5p acted as a tumor suppressor by inhibiting cell proliferation, migration and invasion. Integrated analysis identified VEGFA as a direct and functional target gene of miR-140-5p. Silencing VEGFA by small interfering RNA (siRNA) resembled the phenotype resulting from ectopic miR-140-5p expression, while overexpression of VEGFA attenuated the effect of miR-140-5p on CRC cells. Conclusions: Our results suggested a tumor suppressive role of miR-140-5p in CRC tumorigenesis and progression by targeting VEGFA.
BackgroundWe reviewed details of Chinese Kimura’s disease (KD) cases. A full clinical analysis was subsequently performed to improve the accuracy of clinical diagnosis and treatment of KD.MethodsA total of 24 patients with pathologically confirmed KD treated between March 2008 and March 2018 were reviewed retrospectively for clinical and histopathological analysis.ResultsIn the 24 KD cases, 20 were male and 4 were female with the age of onset ranging from 5 to 65 years. Lesion diameter ranged from 0.6 cm to 7 cm with unilateral involvement being more popular (79%). Imaging examination had a high detection rate for KD involving the parotid gland and subcutaneous but had low specificity. Microscopic analysis indicated that KD mainly involved subcutaneous soft tissue and lymph nodes. The prominent feature of lymphoid tissue was germinal center hyperplasia surrounded by several lobules associated with hyperplastic vascular structures. Out of the 24 patients, 11 experienced recurrence of disease after treatment (surgical resection: 46.2%, surgical resection followed by oral corticosteroids: 71.4% and surgical resection combined with radiotherapy: 0%).ConclusionsOur analysis revealed clinical, imaging, and histological characteristics of KD. A better understanding of the disease will help clinicians reduce misdiagnosis and improve the diagnostic rate upon patient first clinical visit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.