In stereo image super-resolution (SR), exploiting both intra-view and cross-view information is significant but challenging. As existing single image SR (SISR) methods are powerful in intra-view information exploitation, in this letter, we propose a generic stereo attention module (SAM) to extend arbitrary SISR networks for stereo image SR. Specifically, we apply two identical pretrained SISR networks to stereo images. The extracted stereo features at different stages are fed to SAMs to interact cross-view information. Finally, the intra-view and cross-view information is incorporated by SISR networks for stereo image SR. Experiments on the KITTI2012, KITTI2015 and Middlebury datasets have demonstrated the effectiveness of our scheme. Using SAM, we can exploit cross-view information while maintaining the superiority of intra-view information exploitation, resulting in notable performance gain to SISR networks. Moreover, SRResNet equipped with our SAM outperforms the state-of-the-art stereo SR methods. Source code is available at https://github.com/XinyiYing/SAM.
The spatio-temporal information among video sequences is significant for video super-resolution (SR). However, the spatio-temporal information cannot be fully used by existing video SR methods since spatial feature extraction and temporal motion compensation are usually performed sequentially. In this paper, we propose a deformable 3D convolution network (D3Dnet) to incorporate spatio-temporal information from both spatial and temporal dimensions for video SR. Specifically, we introduce deformable 3D convolutions (D3D) to integrate 2D spatial deformable convolutions with 3D convolutions (C3D), obtaining both superior spatio-temporal modeling capability and motion-aware modeling flexibility. Extensive experiments have demonstrated the effectiveness of our proposed D3D in exploiting spatio-temporal information. Comparative results show that our network outperforms the state-of-the-art methods. Code is available at: https://github.com/XinyiYing/D3Dnet.
A simple yet effective state-estimation algorithm is presented and demonstrated to have advantages over previous standard clustering techniques used for the particle probability hypothesis density filter. The idea behind the proposed algorithm is that it uses the latest available information (i.e., the measurements) to direct particle clustering. The particle likelihood and target number estimation, computed during probability hypothesis density recursion, are both used to partition particles into clusters, and the center of each cluster gives the state estimation of an individual target. Simulation results indicate that the proposed algorithm outperforms the standard clustering approach using the k-means algorithm, achieving higher accuracy and shorter computational time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.