Thyroid disease has now become the second largest disease in the endocrine field; SPECT imaging is particularly important for the clinical diagnosis of thyroid diseases. However, there is little research on the application of SPECT images in the computer-aided diagnosis of thyroid diseases based on machine learning methods. A convolutional neural network with optimization-based computer-aided diagnosis of thyroid diseases using SPECT images is developed. Three categories of diseases are considered, and they are Graves' disease, Hashimoto disease, and subacute thyroiditis. A modified DenseNet architecture of convolutional neural network is employed, and the training method is improved. The architecture is modified by adding the trainable weight parameters to each skip connection in DenseNet. And the training method is improved by optimizing the learning rate with flower pollination algorithm for network training. Experimental results demonstrate that the proposed method of convolutional neural network is efficient for the diagnosis of thyroid diseases with SPECT images, and it has superior performance than other CNN methods.
Segmentation of brain tumors from magnetic resonance imaging (MRI) data sets is of great importance for improved diagnosis, growth rate prediction, and treatment planning. However, automating this process is challenging due to the presence of severe partial volume effect and considerable variability in tumor structures, as well as imaging conditions, especially for the gliomas. In this paper, we introduce a new methodology that combines random forests and active contour model for the automated segmentation of the gliomas from multimodal volumetric MR images. Specifically, we employ a feature representations learning strategy to effectively explore both local and contextual information from multimodal images for tissue segmentation by using modality specific random forests as the feature learning kernels. Different levels of the structural information is subsequently integrated into concatenated and connected random forests for gliomas structure inferring. Finally, a novel multiscale patch driven active contour model is exploited to refine the inferred structure by taking advantage of sparse representation techniques. Results reported on public benchmarks reveal that our architecture achieves competitive accuracy compared to the state-of-the-art brain tumor segmentation methods while being computationally efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.