Orthorhombic Dy2W3O12 shows NTE (−2.6 × 10−5 °C−1) in the temperature range of 150–500 °C. So far, this value is the largest coefficient of negative thermal expansion in the A2W3O12 family (A = rare earth element).
In order to study the process of Fe3O4 reduction by melt electro-deoxidation. Electrochemical method was used to analyze the reduction mechanism of Fe3O4 in NaCl-CaCl2 melts. The effects of cell voltage and time on the product were discussed through constant cell voltage electrolysis. The results showed: (1) The reduction of solid Fe3O4 to metallic Fe is a two-step process for obtaining electrons. (2) The transformation process (600 min, 0–1.0 V) of the electrolysis products with the increase of the cell voltage is as follows: Fe3O4 → FeO → FeO + Fe → Fe. (3) The intermediate product Ca2Fe2O5 was formed (2.0 V, 10–300 min), which inhibited the deoxygenation process in the early stage of the reaction. When the electrolysis time exceeds 60 min, the main reaction is the reduction of Ca2Fe2O5 to Fe.
The electrochemical reduction mechanism of Mn in LiMn2O4 in molten salt was studied. The results show that in the NaCl-CaCl2 molten salt, the process of reducing from Mn (IV) to manganese is: Mn (IV)→Mn (III)→Mn (II)→Mn. LiMn2O4 reacts with molten salt to form CaMn2O4 after being placed in molten salt for 1 h. The reaction of reducing CaMn2O4 to Mn is divided into two steps: Mn (III)→Mn (II)→Mn. The results of constant voltage deoxidation experiments under different conditions show that the intermediate products of LiMn2O4 reduction to Mn are CaMn2O4, MnO, and (MnO)x(CaO)(1−x). As the reaction progresses, x gradually decreases, and finally the Mn element is completely reduced under the conditions of 3 V for 9 h. The CaO in the product can be removed by washing the sample with deionized water at 0 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.