In order to study the static and dynamic mechanical characteristics of the coal gangue concrete used in the mine support structure, the compressive strength test, the drop weight impact test, and the Split Hopkinson Pressure Bar (SHPB) test were conducted. The compressive strength, initial and final impacting energy, dynamic strength, and failure characteristic of concrete were obtained of the concrete single-doped with coal gangue coarse aggregate, single-doped with coal gangue fine aggregate, and codoped with coal gangue coarse and fine aggregates. The results show that (1) it is feasible that employing coal gangue to replace natural coarse and fine aggregates in concrete can prepare C30 and C40 concrete; (2) the addition of coal gangue fine aggregate has a positive effect on the impact energy of the initial and final cracks of concrete, while the addition of coal gangue coarse aggregate has a negative effect on it; (3) compared with the static strength, the dynamic strength of concrete is improved no matter whether coal gangue is added to concrete; (4) the incorporation of coal gangue coarse aggregate will make the concrete shear surface smooth; (5) at the given impacting pressure, the concrete with coal gangue coarse aggregate has greater particle breakage and those with coal gangue fine aggregate has less. The research of this study can be a reference for the application of gangue concrete in mine support structures.
The Glauber model is modified with the Fermi-motion effect in the calculation of elastic differential cross-sections and momentum distributions of a fragment from mother nucleus. Different reaction systems at low energies are calculated with the modified Glauber model. It is found that calculations including the Fermi-motion provide a better prescription relating the model to a proper nuclear density distribution by comparing with the experimental data. On the basis of the studies, the influence of the correction on the extracted nuclear radius is quantified. The results further confirm the importance of the Fermi-motion in the nucleus–nucleus collision reactions at low energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.