X-ray images of the lower limb bone are the most commonly used imaging modality for clinical studies, and segmentation of the femur and tibia in an X-ray image is helpful for many medical studies such as diagnosis, surgery and treatment. In this paper, we propose a new approach based on pure dilated residual U-Net for the segmentation of the femur and tibia bones. The proposed approach employs dilated convolution completely to increase the receptive field, in this way, we can make full use of the advantages of dilated convolution. We conducted experiments and evaluations on datasets provided by Tianjin hospital. Comparison with the classical U-net and FusionNet, our method has fewer parameters, higher accuracy, and converges more rapidly, which means the high performance of the proposed method.
Fe nGeTe2 ( n = 3, 4, and 5) has recently attracted increasing attention due to its two-dimensional van der Waals characteristic and high temperature ferromagnetism, which makes promises for spintronic devices. A Fe(1) split site is an important structural characteristic of Fe5GeTe2, which makes it very different from other Fe nGeTe2 ( n = 3 and 4) systems. The local atomic disorder and short-range order can be induced by the split site. In this work, high-quality van der Waals ferromagnet Fe5GeTe2 single crystals were grown to study low-temperature transport properties. We found a resistivity upturn below 10 K. The temperature and magnetic field dependence of the resistivity are in good agreement with a combination of the theory of disorder-enhanced three-dimensional electron–electron and single-channel Kondo effect. The Kondo effect exists only at low magnetic fields [Formula: see text], while electron–electron interaction dominates the appearance for the low-temperature resistivity upturn. We believe that the enhanced three-dimensional electron–electron interaction in this system is induced by the local atomic structural disorder due to the split site of Fe(1). Our results indicate that the split site of Fe plays an important role for the exceptional transport properties.
India has experienced extensive land cover and land use change (LCLUC). However, there is still limited empirical research regarding the impact of LCLUC on climate extremes in India. Here, we applied statistical methods to assess how cropland expansion has influenced temperature extremes in India from 1982 to 2015 using a new land cover and land use dataset and ECMWF Reanalysis V5 (ERA5) climate data. Our results show that during the last 34 years, croplands in western India increased by ~33.7 percentage points. This cropland expansion shows a significantly negative impact on the maxima of daily maximum temperature (TXx), while its impacts on the maxima of daily minimum temperature and the minima of daily maximum and minimum temperature are limited. It is estimated that if cropland expansion had not taken place in western India over the 1982 to 2015 period, TXx would likely have increased by 0.74 (±0.64) °C. The negative impact of croplands on reducing the TXx extreme is likely due to evaporative cooling from intensified evapotranspiration associated with croplands, resulting in increased latent heat flux and decreased sensible heat flux. This study underscores the important influences of cropland expansion on temperature extremes and can be applicable to other geographic regions experiencing LCLUC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.