Elucidating physiological and pathogenic functions of protein methyltransferases (PMTs) relies on knowing their substrate profiles. S-adenosyl-L-methionine (SAM) is the sole methyl-donor cofactor of PMTs. Recently, SAM analogues have emerged as novel small-molecule tools to label PMT substrates. Here we reported the development of a clickable SAM analogue cofactor, 4-propargyloxy-but-2-enyl SAM, and its implementation to label substrates of human protein arginine methyltransferase 1 (PRMT1). In the system, the SAM analogue cofactor, coupled with matched PRMT1 mutants rather than native PRMT1, was shown to efficiently label PRMT1 substrates. The transferable 4-propargyloxy-but-2-enyl moiety of the SAM analogue further allowed corresponding modified substrates to be characterized through a subsequent click chemical ligation with an azido-based probe. The SAM analogue, in combination with a rational protein-engineering approach, thus demonstrates potential to label and identify PMT targets in the context of a complex cellular mixture.
Protein lysine methyltransferases (PKMTs) play crucial roles in normal physiology and disease processes. Profiling PKMT targets is an important but challenging task. With cancer-relevant G9a as a target, we have demonstrated the success in developing S-adenosyl-L-methionine (SAM) analogues, particularly (E)-hex-2-en-5-ynyl SAM (Hey-SAM), as cofactors for engineered G9a. Hey-SAM analogue in combination with G9a Y1154A mutant modifies the same set of substrates as their native counterparts with remarkable efficiency. (E)-Hex-2-en-5-ynylated substrates undergo smooth click reaction with an azide-based probe. This approach is thus suitable for substrate characterization of G9a and expected to further serve as a starting point to evolve other PKMTs to utilize a similar set of cofactors.
Protein methyltransferases (PMTs) have emerged as important epigenetic regulators in myriad biological processes both in normal physiology and disease conditions. However, elucidating PMT-regulated epigenetic processes has been hampered by ambiguous knowledge about in vivo activities of individual PMTs particularly because of their overlapping but non-redundant functions. To address limitations of conventional approaches in mapping chromatin modification of specific PMTs, we have engineered the chromatin-modifying apparatus and formulated a novel technology, termed Clickable Chromatin Enrichment with parallel DNA sequencing (CliEn-seq), to probe genome-wide chromatin modification within living cells. The three-step approach of CliEn-seq involves in vivo synthesis of S-adenosyl-L-methionine (SAM) analogues from cell-permeable methionine analogues by engineered SAM synthetase (methionine adenosyltransferase or MAT), in situ chromatin modification by engineered PMTs, subsequent enrichment and sequencing of the uniquely modified chromatins. Given critical roles of the chromatin-modifying enzymes in epigenetics and structural similarity among many PMTs, we envision that the CliEn-seq technology is generally applicable in deciphering chromatin methylation events of individual PMTs in diverse biological settings.
Epigenetic regulations are involved in numerous physiological and pathogenic processes. Among the key regulators that orchestrate epigenetic signaling are over 50 human protein lysine methyltransferases (PKMTs). Interrogating the functions of individual PKMTs can be facilitated by target-specific PKMT inhibitors. Given the emerging need of such small molecules, we envision an approach to identify target-specific methyltransferase inhibitors by screening privileged small-molecule scaffolds against diverse methyltransferases. Here we demonstrate such feasibility by identifying the inhibitors of SETD2. N-propyl sinefungin (Pr-SNF) was shown to preferentially interact with SETD2 by matching the distinct transition-state features of SETD2’s catalytically-active conformer. With Pr-SNF as a structure probe, we further revealed the dual roles of SETD2’s post-SET loop on regulating substrate access through a distinct topological reconfiguration. Privileged sinefungin scaffolds are expected to have broad use as structure and chemical probes of methyltransferases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.