Purpose
The purpose of this paper is to put forward the lubrication model of oil bearing and enrich the design theory under the condition of mixed lubrication.
Design/methodology/approach
A mixed lubrication model of bilayer porous bearing is established. The effects of the working conditions on the lubrication performance and seepage behavior were analyzed.
Findings
Results show that the oil film pressure mainly occurs in the bearing convergence zone and contact pressure mainly occurs near the minimum film thickness. The oil infiltrates into the porous matrix in the contact area and precipitates out to the friction surface at the inlet of the contact area. The oil seepage velocity and dynamic pressure effect at the friction interface can be improved by reasonably matching the load and speed. With the decrease of the external load or increase of the rotating speed, the lubrication performance becomes well.
Originality/value
This study provides a reference for the design and application of oil bearing under harsh working conditions.
This article aims to investigate the percolation and supply behavior of lubricant on the porous self-lubricating material. The numerical model is established to describe the infiltration-exudation response in the deformed porous material. It is found that the lubricant stored in the pores is forced to flow when the loaded porous matrix deforms. The flow drives the seepage stratification in the porous body and forms an interlayer flow zone. The fluid pressure gradient in the normal direction is the internal factor of the seepage stratification. The interlayer flow zone first appears in the middle of the vertical direction of the porous matrix. With the increase of loading time, the interlayer flow zone gradually moves from the middle to the bottom of the porous matrix, which means that the quantity of the lubricant stored in the porous surface decreases. In the whole process of the seepage response, the lubricant flows out from the inlet and continuously supplies lubricant to the contact area. Delaying the downward movement of the interlayer flow zone can ensure the continuous exudation of the lubricant, which is beneficial to maintain excellent lubrication characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.