A mixed finite element method (MFEM), using dual-parametric piecewise biquadratic and affine (DP-Q2-P1) finite element approximations for the deformation and the pressure like Lagrange multiplier respectively, is developed and analyzed for the numerical computation of incompressible nonlinear elasticity problems with large deformation gradient, and a damped Newton method is applied to solve the resulted discrete problem. The method is proved to be locking free and stable. The accuracy and efficiency of the method are illustrated by numerical experiments on some typical cavitation problems.
A mixed finite element method combining an iso-parametric Q 2 -P 1 element and an iso-parametric P + 2 -P 1 element is developed for the computation of multiple cavities in incompressible nonlinear elasticity. The method is analytically proved to be locking-free and convergent, and it is also shown to be numerically accurate and efficient by numerical experiments. Furthermore, the newly developed accurate method enables us to find an interesting new bifurcation phenomenon in multicavity growth.
In this paper, we present the numerical analysis on high order dual parametric finite element methods for the cavitation computation problems in nonlinear elasticity, which leads to a meshing strategy assuring high efficiency on numerical approximations to cavity deformations. Furthermore, to cope with the high order approximation of the finite element methods, properly chosen weighted Gaussian type numerical quadrature is applied to the singular part of the elastic energy. Our numerical experiments show that the high order dual parametric finite element methods work well when coupled with properly designed weighted Gaussian type numerical quadratures for the singular part of the elastic energy, and the convergence rates of the numerical cavity solutions are shown to be significantly improved as expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.