Inorganic hierarchical nanostructures have remarkable potential applications in environmental metal remediation; however, their applications usually suffer from low capacity, high cost, and difficulties in the recycling of adsorbents. We previously reported a facile strategy to synthesize acid-insoluble calcium silicate hydrates (CSH) from oyster shells, a representative kind of biowaste. However, little is known of the structure, size, and morphology of the as-prepared CSH, which hampers the improvement of their adsorption capacities. In this work, systematic investigation of the structures of as-generated CSH demonstrate that they have a hierarchically porous structure composed of thin nano-sheets, where each nano-sheet is assembled by nano-fibers with width of around ten nanometers. The hierarchical nanostructures with pore size of ∼12 nm provide a significant amount of active sites to graft polyethyleneimine (PEI), which enables the efficient extraction of both Cu(ii) cations and Cr(vi) anions from the aqueous solution. Batch experiments further indicate that the PEI-modified PCSH exhibit a maximum adsorption capacity of 203 and 256 mg g(-1) for Cu(ii) and Cr(vi), respectively, much higher than that of CSH, OS and many other adsorbents in literature. The adsorption of Cu(ii) and Cr(vi) proved to be spontaneous and exothermic. Combining the pH-dependent experiments with X-ray photoelectron spectroscopy analysis, the underlying mechanism is discussed. PCSH derived from OS biowaste maintains an efficient extraction ability toward Cu(ii) and Cr(vi) after five adsorption-desorption cycles. It is also applicable for treating various kinds of heavy metal ions and organic pollutants, showing potentially wide applications in water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.