The separation of plasma from whole blood is the first step in many diagnostic tests. Point-of-care tests often rely on integrated plasma filters, but protein retention in such filters limits their performance. Here, we investigate plasma separation on interlocked micropillar scaffolds (“synthetic paper”) by the local agglutination of blood cells coupled with the capillary separation of the plasma. We separated clinically relevant volumes of plasma with high efficiency in a separation time on par with that of state of the art techniques. We investigated different covalent and noncovalent surface treatments (PEGMA, HEMA, BSA, O2 plasma) on our blood filter and their effect on protein recovery and identified O2 plasma treatment and 7.9 μg/cm2 agglutination antibody as most suitable treatments. Using these treatments, we recovered at least 82% of the blood plasma proteins, more than with state-of-the-art filters. The simplicity of our device and the performance of our approach could enable better point-of-care tests.
Transendothelial migration of cancer cells is a critical stage in cancer, including breast cancer, as the migrating cells are generally believed to be highly metastatic. However, it is still challenging for many existing platforms to achieve a fully covering endothelium and to ensure transendothelial migration capability of the extracted cancer cells for analyses with high specificity. Here, we report a microfluidic device containing multiple independent cell collection microchambers underneath an embedded endothelium such that the transendothelial-migrated cells can be selectively collected from only the microchambers with full coverage of an endothelial layer. In this work, we first optimize the pore size of a microfabricated supporting membrane for the endothelium formation. We quantify transendothelial migration rates of a malignant human breast cell type (MDA-MB-231) under different shear stress levels. We investigate characteristics of the migrating cells including morphology, cytoskeletal structures, and migration (speed and persistence). Further implementation of this endothelium-embedded microfluidic device can provide important insights into migration and intracellular characteristics related to cancer metastasis and strategies for effective cancer therapy.
Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.
Capillary flow is a dominating liquid transport phenomenon on the micro- and nanoscale. As described at the beginning of the 20th century, the flow rate during imbibition of a horizontal capillary tube follows the Washburn equation, i.e., decreases over time and depends on the viscosity of the sample. This poses a problem for capillary driven systems that rely on a predictable flow rate and where the liquid viscosity is not precisely known. Here we introduce and successfully experimentally verify the first compact capillary pump design with a flow rate constant in time and independent of the liquid viscosity that can operate over an extended period of time. We also present a detailed theoretical model for gravitation-independent capillary filling, which predicts the novel pump performance to within measurement error margins, and in which we, for the first time, explicitly identify gas inertia dominated flow as a fourth distinct flow regime in capillary pumping. These results are of potential interest for a multitude of applications and we expect our results to find most immediate applications within lab-on-a-chip systems and diagnostic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.