Background/Aims: Long noncoding RNAs (lncRNAs) have recently emerged as novel and potentially promising therapeutic targets in various cancers. However, the expression pattern and biological function of lncRNAs in glioma remain largely elusive. In the present study, we investigated the functional role of an lncRNA, small nucleolar RNA host gene 16 (SNHG16), in glioma. Methods: The expression levels of SNHG16 and miR-4518 were measured using qRT-PCR. The relationship between the levels of SNHG16 and clinicopathologic features were statically analyzed. The levels of proteins were detected using western blot. Bioinformatics analysis and luciferase reporter assays were applied to the analysis of the relationship between SNHG16, miR-4518 and PRMT5. Cell viability and apoptosis were measured using MTT and apoptosis ELISA assay, respectively. Results: SNHG16 was highly expressed in glioma tissues and cell lines, which was related to poorer clinicopathologic features and shorter survival time. Knockdown of SNHG16 inhibits the viability and induces apoptosis of glioma cells. Further investigation revealed that SNHG16 could up-regulate the expression of miR-4518 targeted gene PRMT5 via acting as an endogenous sponge of miR-4518. Moreover, SNHG16 also affects the expression of Bcl-2 family proteins and the activation of PI3K/Akt signaling pathway. Conclusion: Our study revealed a novel SNHG16-miR-4518-PRMT5 pathway regulatory axis in glioma pathogenesis. SNHG16 could be used as a potential therapeutic target in the treatment of glioma.
Lithium–sulfur (Li–S) batteries constitute promising next-generation energy storage devices due to the ultrahigh theoretical energy density of 2600 Wh kg–1. However, the multiphase sulfur redox reactions with sophisticated homogeneous and heterogeneous electrochemical processes are sluggish in kinetics, thus requiring targeted and high-efficient electrocatalysts. Herein, a semi-immobilized molecular electrocatalyst is designed to tailor the characters of the sulfur redox reactions in working Li–S batteries. Specifically, porphyrin active sites are covalently grafted onto conductive and flexible polypyrrole linkers on graphene current collectors. The electrocatalyst with the semi-immobilized active sites exhibits homogeneous and heterogeneous functions simultaneously, performing enhanced redox kinetics and a regulated phase transition mode. The efficiency of the semi-immobilizing strategy is further verified in practical Li–S batteries that realize superior rate performances and long lifespan as well as a 343 Wh kg–1 high-energy-density Li–S pouch cell. This contribution not only proposes an efficient semi-immobilizing electrocatalyst design strategy to promote the Li–S battery performances but also inspires electrocatalyst development facing analogous multiphase electrochemical energy processes.
Lithium‒sulfur (Li–S) battery is considered as a promising energy storage system to realize high energy density. Nevertheless, unstable lithium metal anode emerges as the bottleneck toward practical applications, especially with limited anode excess required in a working full cell. In this contribution, a mixed diisopropyl ether‐based (mixed‐DIPE) electrolyte was proposed to effectively protect lithium metal anode in Li–S batteries with sulfurized polyacrylonitrile (SPAN) cathodes. The mixed‐DIPE electrolyte improves the compatibility to lithium metal and suppresses the dissolution of lithium polysulfides, rendering significantly improved cycling stability. Concretely, Li | Cu half‐cells with the mixed‐DIPE electrolyte cycled stably for 120 cycles, which is nearly five times longer than that with routine carbonate‐based electrolyte. Moreover, the mixed‐DIPE electrolyte contributed to a doubled life span of 156 cycles at 0.5 C in Li | SPAN full cells with ultrathin 50 μm Li metal anodes compared with the routine electrolyte. This contribution affords an effective electrolyte formula for Li metal anode protection and is expected to propel the practical applications of high‐energy‐density Li‒S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.