Data-flow testing (DFT) is a family of testing strategies designed to verify the interactions between each program variable’s definition and its uses. Such a test objective of interest is referred to as a def-use pair . DFT selects test data with respect to various test adequacy criteria (i.e., data-flow coverage criteria ) to exercise each pair. The original conception of DFT was introduced by Herman in 1976. Since then, a number of studies have been conducted, both theoretically and empirically, to analyze DFT’s complexity and effectiveness. In the past four decades, DFT has been continuously concerned, and various approaches from different aspects are proposed to pursue automatic and efficient data-flow testing. This survey presents a detailed overview of data-flow testing, including challenges and approaches in enforcing and automating it: (1) it introduces the data-flow analysis techniques that are used to identify def-use pairs; (2) it classifies and discusses techniques for data-flow-based test data generation, such as search-based testing, random testing, collateral-coverage-based testing, symbolic-execution-based testing, and model-checking-based testing; (3) it discusses techniques for tracking data-flow coverage; (4) it presents several DFT applications, including software fault localization, web security testing, and specification consistency checking; and (5) it summarizes recent advances and discusses future research directions toward more practical data-flow testing.
At this moment, GAN-based image generation methods are still imperfect, whose upsampling design has limitations in leaving some certain artifact patterns in the synthesized image. Such artifact patterns can be easily exploited (by recent methods) for difference detection of real and GAN-synthesized images. However, the existing detection methods put much emphasis on the artifact patterns, which can become futile if such artifact patterns were reduced. Towards reducing the artifacts in the synthesized images, in this paper, we devise a simple yet powerful approach termed FakePolisher that performs shallow reconstruction of fake images through a learned linear dictionary, intending to effectively and efficiently reduce the artifacts introduced during image synthesis. In particular, we first train a dictionary model to capture the patterns of real images. Based on this dictionary, we seek the representation of DeepFake images in a low dimensional subspace through linear projection or sparse coding. Then, we are able to perform shallow reconstruction of the 'fake-free' version of the DeepFake image, which largely reduces the artifact patterns DeepFake introduces. The comprehensive evaluation on 3 state-of-the-art DeepFake detection methods and fake images generated by 16 popular GAN-based fake image generation techniques, demonstrates the effectiveness of our technique. Overall, through reducing artifact patterns, our technique significantly reduces the accuracy of the 3 state-of-theart fake image detection methods, i.e., 47% on average and up to 93% in the worst case. Our results confirm the limitation of current fake detection methods and calls the attention of DeepFake researchers and practitioners for more general-purpose fake detection techniques. CCS CONCEPTS • Security and privacy → Human and societal aspects of security and privacy; • Computing methodologies → Computer vision.
Abstract-Knowledge graphs have been widely adopted, in large part owing to their schema-less nature. It enables knowledge graphs to grow seamlessly and allows for new relationships and entities as needed. Natural language questions are the most intuitive way of formulating an information need. People can formulate questions to express their information needs. Natural language questions as a query language present an ideal compromise between keyword and structured querying. Questions can be used to express complex information needs that cannot be expressed as keywords without a significant loss in structure and semantics. Knowledge graph has abundant natural semantics and can contain various and more complete information. Its expression mechanism is closer to natural language. We propose to clarify the expression of knowledge graph as a whole. We use knowledge graph to solve the Five Ws problems respectively which are guided by interrogative words such as who/when, what, how and why. We also propose to specify knowledge graph in a progressive manner as four basic forms including data graph, information graph, knowledge graph and wisdom graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.