As a key functional trait, leaf photosynthetic pigment content (LPPC) plays an important role in the health status monitoring and yield estimation of apples. Hyperspectral features including vegetation indices (VIs) and derivatives are widely used in retrieving vegetation biophysical parameters. The fractional derivative spectral method shows great potential in retrieving LPPC. However, the performance of fractional derivatives and machine learning (ML) for retrieving apple LPPC still needs to be explored. The objective of this study is to test the capacity of using fractional derivative and ML methods to retrieve apple LPPC. Here, the hyperspectral data in the 400–2500 nm domains was used to calculate the fractional derivative order of 0.2–2, and then the sensitive bands were screened through feature dimensionality reduction to train ML to build the LPPC estimation model. Additionally, VIs-based ML methods and empirical regression models were developed to compare with the fractional derivative methods. The results showed that fractional derivative-driven ML methods have higher accuracy than the ML methods driven by the original spectra or vegetation index. The results also showed that the ML methods perform better than empirical regression models. Specifically, the best estimates of chlorophyll content and carotenoid content were achieved using support vector regression (SVR) at the derivative order of 0.2 (R2 = 0.78) and 0.4 (R2 = 0.75), respectively. The fractional derivative maintained a good universality in retrieving the LPPC of multiple phenological periods. Therefore, this study highlights that the fractional derivative and ML improved the estimation of apple LPPC.
Ear height (EH) and ear–plant height ratio (ER) are important agronomic traits in maize that directly affect nutrient utilization efficiency and lodging resistance and ultimately relate to maize yield. However, challenges in executing large-scale EH and ER measurements severely limit maize breeding programs. In this paper, we propose a novel, simple method for field monitoring of EH and ER based on the relationship between ear position and vertical leaf area profile. The vertical leaf area profile was estimated from Terrestrial Laser Scanner (TLS) and Drone Laser Scanner (DLS) data by applying the voxel-based point cloud method. The method was validated using two years of data collected from 128 field plots. The main factors affecting the accuracy were investigated, including the LiDAR platform, voxel size, and point cloud density. The EH using TLS data yielded R2 = 0.59 and RMSE = 16.90 cm for 2019, R2 = 0.39 and RMSE = 18.40 cm for 2021. In contrast, the EH using DLS data had an R2 = 0.54 and RMSE = 18.00 cm for 2019, R2 = 0.46 and RMSE = 26.50 cm for 2021 when the planting density was 67,500 plants/ha and below. The ER estimated using 2019 TLS data has R2 = 0.45 and RMSE = 0.06. In summary, this paper proposed a simple method for measuring maize EH and ER in the field, the results will also offer insights into the structure-related traits of maize cultivars, further aiding selection in molecular breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.