Ductile fracture criterion is key limitation parameter in material forming. Accuracy predicting surface and internal failure in plastic deformation process affects on the technology design of workpiece and die greatly. Tension, compression, torsion and shearing test on 45# steel are utilized for providing the experimental values of the critical values at fracture, and 11 widely used ductile fracture criterion are selected to simulate the physical experiments and their relative accuracy for predicting and quantifying fracture initiation sites are investigated. The comparing results show that metal forming process under high triaxiality can be estimated successively using both Normalized Cockcroft-latham and the Brozzo ductile fracture criteria, but the Ayada and general Rice-Tracey model work very well for the low triaxiality cases.
Aims. An asymmetric dust cloud was detected around the Moon by the Lunar Dust Experiment on board the Lunar Atmosphere and Dust Environment Explorer mission. We investigate the dynamics of the grains that escape the Moon and their configuration in the Earth-Moon system.
Methods. We use a plausible initial ejecta distribution and mass production rate for the ejected dust. Various forces, including the solar radiation pressure and the gravity of the Moon, Earth, and Sun, are considered in the dynamical model, and direct numerical integrations of trajectories of dust particles are performed. The final states, the average life spans, and the fraction of retrograde grains as functions of particle size are computed. The number density distribution in the Earth-Moon system is obtained through long-term simulations.
Results. The average life spans depend on the size of dust particles and show a rapid increase in the size range between 1 and 10 μm. About 3.6 × 10−3 kg s−1 (~2%) particles ejected from the lunar surface escape the gravity of the Moon, and they form an asymmetric torus between the Earth and the Moon in the range [10 RE, 50 RE], which is offset toward the direction of the Sun. A considerable number of retrograde particles occur in the Earth-Moon system.
In this paper, a coupling nonlinear dynamic model of the drum and subgrade is established for the vibratory roller. The dynamic characteristics of the rigid drum of the vibratory roller in the process of vibratory compaction are comprehensively investigated by time history, phase diagram, frequency spectrum, Poincare map, and bifurcation diagram. During the compaction process, the stiffness of the subgrade increases and the motion of the rigid drum of the vibratory roller changes from a single period to multiple periods and finally enters chaos by the way of period doubling. Moreover, the roller parameters also significantly affect the dynamic characteristics of the rigid drum and the compaction effect of the subgrade. Based on detailed numerical results, a parameter adjustment strategy about the roller frequency and nominal amplitude is proposed, which can avoid the “bouncing” of the drum during compaction and improve the compaction efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.