The Anatomical Therapeutic Chemical (ATC) classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes) they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1) alimentary tract and metabolism; (2) blood and blood forming organs; (3) cardiovascular system; (4) dermatologicals; (5) genitourinary system and sex hormones; (6) systemic hormonal preparations, excluding sex hormones and insulins; (7) anti-infectives for systemic use; (8) antineoplastic and immunomodulating agents; (9) musculoskeletal system; (10) nervous system; (11) antiparasitic products, insecticides and repellents; (12) respiratory system; (13) sensory organs; (14) various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2nd-level, 3rd-level, 4th-level, and 5th-level ATC-classifications once the statistically significant benchmark data are available for these lower levels.
The functional connectome derived from BOLD resting-state functional magnetic resonance imaging data represents meaningful functional organizations and a shift between distinct cognitive states. However, the body of knowledge on how the long-term career experience affects the brain’s functional plasticity is still very limited. In this study, we used a dynamic functional connectome characterization (DBFCC) model with the automatic target generation process K-Means clustering to explore the functional reorganization property of resting brain states, driven by long-term career experience. Taking sailors as an example, DBFCC generated seventeen reproducibly common atomic connectome patterns (ACP) and one reproducibly distinct ACP, i.e., ACP14. The common ACPs indicating the same functional topology of the resting brain state transitions were shared by two control groups, while the distinct ACP, which mainly represented functional plasticity and only existed in the sailors, showed close relationships with the long-term career experience of sailors. More specifically, the distinct ACP14 of the sailors was made up of four specific sub-networks, such as the auditory network, visual network, executive control network, and vestibular function-related network, which were most likely linked to sailing experience, i.e., continuously suffering auditory noise, maintaining balance, locating one’s position in three-dimensional space at sea, obeying orders, etc. Our results demonstrated DBFCC’s effectiveness in revealing the specifically functional alterations modulated by sailing experience and particularly provided the evidence that functional plasticity was beneficial in reorganizing brain’s functional topology, which could be driven by career experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.