Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.
This paper addresses the challenge of recognizing behavior of groups of individuals in unconstraint surveillance environments. As opposed to approaches that rely on agglomerative or decisive hierarchical clustering techniques, we propose to recognize group interactions without making hard decisions about the underlying group structure. Instead we use a probabilistic grouping strategy evaluated from the pairwise spatial-temporal tracking information. A path-based grouping scheme determines a soft segmentation of groups and produces a weighted connection graph where its edges express the probability of individuals belonging to a group. Without further segmenting this graph, we show how a large number of low-and high-level behavior recognition tasks can be performed. Our work builds on a mature multi-camera multi-target person tracking system that operates in real-time. We derive probabilistic models to analyze individual track motion as well as group interactions. We show that the soft grouping can combine with motion analysis elegantly to robustly detect and predict grouplevel activities. Experimental results demonstrate the efficacy of our approach.
A Bayesian marked point process (MPP) model is developed to detect and count people in crowded scenes. The model couples a spatial stochastic process governing number and placement of individuals with a conditional mark process for selecting body shape. We automatically learn the mark (shape) process from training video by estimating a mixture of Bernoulli shape prototypes along with an extrinsic shape distribution describing the orientation and scaling of these shapes for any given image location. The reversible jump Markov Chain Monte Carlo framework is used to efficiently search for the maximum a posteriori configuration of shapes, leading to an estimate of the count, location and pose of each person in the scene. Quantitative results of crowd counting are presented for two publicly available datasets with known ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.