Convolutional neural networks (CNN) are the current stateof-the-art for many computer vision tasks. CNNs outperform older methods in accuracy, but require vast amounts of computation and memory. As a result, existing CNN applications are typically run on clusters of CPUs or GPUs. Research on FPGA acceleration of CNN workloads has achieved reductions in power and energy consumption. However, large GPUs outperform modern FPGAs in throughput, and the existence of compatible deep learning frameworks give GPUs a significant advantage in programmability. Recent work in machine learning demonstrates the potential of very low precision CNNs-i.e., CNNs with binarized weights and activations. Such binarized neural networks (BNNs) appear well suited for FPGA implementation, as their dominant computations are bitwise logic operations and their memory requirements are greatly reduced. A combination of low-precision networks and high-level design methodology may help address the performance and productivity gap between FPGAs and GPUs. In this paper, we present the design of a BNN accelerator that is synthesized from C++ to FPGA-targeted Verilog. The accelerator outperforms existing FPGA-based CNN accelerators in GOPS as well as energy and resource efficiency.
3D teeth reconstruction from X-ray is important for dental diagnosis and many clinical operations. However, no existing work has explored the reconstruction of teeth for a whole cavity from a single panoramic radiograph. Different from single object reconstruction from photos, this task has the unique challenge of constructing multiple objects at high resolutions. To conquer this task, we develop a novel ConvNet X2Teeth that decomposes the task into teeth localization and single-shape estimation. We also introduce a patch-based training strategy, such that X2Teeth can be end-to-end trained for optimal performance. Extensive experiments show that our method can successfully estimate the 3D structure of the cavity and reflect the details for each tooth. Moreover, X2Teeth achieves a reconstruction IoU of 0.681, which significantly outperforms the encoder-decoder method by 1.71× and the retrieval-based method by 1.52×. Our method can also be promising for other multi-anatomy 3D reconstruction tasks.
Panoramic X-ray (PX) provides a 2D picture of the patient's mouth in a panoramic view to help dentists observe the invisible disease inside the gum. However, it provides limited 2D information compared with cone-beam computed tomography (CBCT), another dental imaging method that generates a 3D picture of the oral cavity but with more radiation dose and a higher price. Consequently, it is of great interest to reconstruct the 3D structure from a 2D X-ray image, which can greatly explore the application of X-ray imaging in dental surgeries. In this paper, we propose a framework, named Oral-3D, to reconstruct the 3D oral cavity from a single PX image and prior information of the dental arch. Specifically, we first train a generative model to learn the cross-dimension transformation from 2D to 3D. Then we restore the shape of the oral cavity with a deformation module with the dental arch curve, which can be obtained simply by taking a photo of the patient's mouth. To be noted, Oral-3D can restore both the density of bony tissues and the curved mandible surface. Experimental results show that Oral-3D can efficiently and effectively reconstruct the 3D oral structure and show critical information in clinical applications, e.g., tooth pulling and dental implants. To the best of our knowledge, we are the first to explore this domain transformation problem between these two imaging methods.
Label propagation is a popular technique for anatomical segmentation. In this work, we propose a novel deep framework for label propagation based on non-local label fusion. Our framework, named CompareNet, incorporates subnets for both extracting discriminating features, and learning the similarity measure, which lead to accurate segmentation. We also introduce the voxel-wise classification as an unary potential to the label fusion function, for alleviating the search failure issue of the existing non-local fusion strategies. Moreover, CompareNet is endto-end trainable, and all the parameters are learnt together for the optimal performance. By evaluating CompareNet on two public datasets IB-SRv2 and MICCAI 2012 for brain segmentation, we show it outperforms state-of-the-art methods in accuracy, while being robust to pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.